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ABSTRACT

Variable-order fractional partial differential equations provide a competitive means
in modeling challenging phenomena such as the anomalous diffusion and the memory
effects and thus attract widely attentions. However, variable-order fractional models
exhibit salient features compared with their constant-order counterparts and intro-
duce mathematical and numerical difficulties that are not common in the context of
integer-order and constant-order fractional partial differential equations.

This dissertation intends to carry out a comprehensive investigation on the mathe-
matical analysis and numerical approximations to variable-order fractional derivative
problems, including variable-order time-fractional, space-fractional, and space-time
fractional partial differential equations, as well as the corresponding inverse problems.
Novel techniques are developed to accommodate the impact of the variable fractional
order and the proposed mathematical and numerical methods provide potential tools

to analyze and compute the variable-order fractional problems.
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CHAPTER 1

INTRODUCTION

The concept of the fractional derivative dates back to Leibniz at 1695 and extends the
integer-order derivative to the fractional case. In the past several decades, the non-
local feature of the fractional operators opens up great opportunities for adequately
describing the memory and hereditary properties of physical processes and thus leads
to new applications in many fields such as anomalously diffusive transport [69, 106],
viscoelastic mechanics [75] and financial mathematics [32, 66, 80]. Consequently, frac-
tional partial differential equations (FPDEs), in which the temporal or/and spatial
fractional derivatives are involved in the PDE models, attract increasing attentions
[4,9, 10, 11, 13, 15, 16, 17, 22, 26, 27, 31, 34, 36, 39, 43, 48, 49, 50, 58, 72, 84, 88,
90, 97, 101, 111].

However, FPDEs introduce new mathematical issues that are not common in the
context of integer-order PDEs. It was shown in [38, 71, 77, 85] that the first-order
time derivative of the solutions to the time-fractional diffusion equations (tFDEs)
of order 0 < a < 1 had a singularity of order O(t*"!) near the initial time ¢ = 0,
which makes the error estimates in the literature that were proved under full regu-
larity assumptions of the true solutions inappropriate. Nevertheless, the singularity
of the solutions to the tFDEs at ¢ = 0 does not seem to be physically relevant to
the diffusive transport processes. Similar issue happens in space-fractional diffusion
equations (sFDEs). In [23, 93, 94], the solutions of sFDEs were shown to exhibit
singularities near the boundary under the assumptions that the data of the equations

are sufficiently smooth.
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It is getting clear that the fundamental reason why this phenomenon occurs in
tFDEs lies in the incompatibility between the power law decaying tail and the locality
of the initial condition at the time ¢t = 0. Intuitively, to eliminate the nonphysical
singularity of the solutions, as ¢ — 0 the power law decaying tail should switch
smoothly to an exponentially decaying tail to account for the impact of locality of
the initial condition at the time ¢ = 0. That is, a physically relevant tFDE should
switch to a classical integer-order diffusion equation near the time ¢t = 0, since the
power of the heavy tail relates closely to the order of the tFDEs. In other words,
variable-order tFDEs, which have a variable-order that approaches to an integer order
near the time ¢ = 0, provide a physically relevant and feasible fix to the conventional
constant-order tFDE models, while capturing the anomalously diffusive transport
behavior that the constant-order tFDEs intend to model.

We emphasize that the variable-order tFDEs do not just provide a physically
relevant fix of the constant-order tFDEs, but occur in a variety of real applications.
In such applications as bioclogging [6], nonconventional hydrocarbon or gas recovery
[29], design of shape memory polymer [53], manufacturing of viscoelastic materials
[75] and biomaterials in orthopedic implants [99], the structure of porous materials
may evolve in time. As the order of a FPDE is related to the fractal dimension of the
porous material via the Hurst index [69], these applications may be properly modeled
by variable-order tFDEs [53, 60, 87, 112].

Variable-order fractional operators were first proposed and studied in [79], in
which they were proved to present salient differences compared with constant-order
fractional operators. Many basic properties of the constant-order fractional operators,
e.g., the semigroup property (or the index law) of the constant-order fractional inte-
gral, do not hold in the variable-order case. Therefore, the impact of the variable frac-
tional orders introduces hurdles that are not encountered in the contest of constant-

order cases when carrying out mathematical and numerical analysis to variable-order
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FPDEs. For instance, (i) commonly-used techniques such as the Laplace transform
do not apply to find closed-form solutions of variable-order FPDEs, which makes the
analysis of the solution properties of variable-order FPDEs intricate. Numerically,
(ii) the coefficients of the L1 discretization method, a widely used method when ap-
proximating time-fractional derivatives [42, 56, 85], may lose the monotonicity due
to the variably memory effects of variable-order fractional operators, which is key in
error estimates. In particular, (iii) the singularity of the solutions to variable-order
FPDEs needs to be characterized and involved when performing error estimates of
numerical approximations, instead of imposing artificial smoothness assumptions on
the solutions.

There are several literature on the modeling and numerical computations of variable-
order fractional FPDEs [20, 25, 37, 86, 87, 104], while the corresponding rigorous
mathematical and numerical analyses are far from well-developed. In [92] a piecewise-
constant order FPDE was solved analytically on each piece via the explicit formula
for constant-order FPDE, with the solutions on the previous pieces and the solution
value at the left end of the current piece as the source term and the initial data,
respectively. In [41], the well-posedness of a tFDE with a space-dependent variable
order was proved. Since the variable order only depends on the spatial variable,
the Laplace transform in time could still be used to find the solution representa-
tion. In [12], the well-posedness, regularity, and asymptotic behavior of a linear
fractional integro-differential equations with a time-dependent order was analyzed
via the Laplace transform approach as the definition of the variable-order fractional
integral was given in terms of the Laplace transform of the convolution kernel. In [46]
the uniqueness of the solutions to a time-fractional Fokker-Planck equation with a
space-dependent variable order was proved via the energy method. Nevertheless, sys-
tematic investigations on variable-order tFDEs with time-dependent variable orders

and variable-order sFDEs are still open problems.
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We mainly focus on analyzing variable-order tFDEs with time-dependent variable
orders in this dissertzation. There are two different types of variable-order fractional
operators, namely, variable-order operators with and without hidden memory (cf.
(2.5) and (2.6)), the properties of which are significantly different from each other.
Loosely speaking, at each time instant, the orders of the variable-order operators
without hidden memory are fixed from the initial time to the current instant, and
thus they behave like their constant-order analogues. However, the hidden-memory
type operators still have varying orders within that time interval, which makes the
corresponding theoretical analysis and numerical approximations more difficult.

Theoretically, there are two methods we follow to analyze the proposed models.
One is to employ the spectral decomposition method for the variable-order tFDEs
and then convert the component ordinary differential equations (ODEs) into equiv-
alent integral equations, in which the impact of the variable order could be handled
such that the analysis can be processed. This method is straightforward to imple-
ment and could also be extended to analyze variable-order space-time FDEs [116]/
sFDEs [113]/ fractional wave equations [115]/ fractional stochastic differential equa-
tions [117]/ FPDEs with non-singular kernels [119, 118] and variably distributed-order
tFDEs [102]. Another method is to consider the variable-order fractional term as part
of the source term and then apply the solution representation formula of integer-order
PDEs via resolvent operators to find a formal expression of the solutions to variable-
order tFDEs for analysis. This method is particularly suitable for problems with
space-dependent coefficients or variable orders, or to perform L? estimates of the
solutions.

In the numerical aspect, the L1 coefficients of variable-order tFDEs with hidden-
memory variable orders lose monotonicity as those for constant-order tFDEs and
even variable-order tFDEs without hidden memory, and the bilinear form of the

variable-order sFDEs loses coercivity due to the impact of the variable order. These

www.manaraa.com



present hurdles in numerical analysis. We develop novel schemes and techniques to
resolve these issues and provide accurate approximations to variable-order fractional
derivative problems.

The rest of the dissertation is organized as follows: In Chapter 2 we present pre-
liminaries and refer basic properties of constant-order fractional operators. Then
we prove mapping properties of variable-order fractional operators to be used sub-
sequently. In Chapter 3 we study the modeling, well-posedness and regularity of
variable-order tFDEs as well as their numerical approximations. Convergence esti-
mate of the proposed scheme is rigorously proved without any artificial smoothness
assumption on the solutions. In Chapter 4 we analyze and discretize a different kind
of variable-order tFDEs, i.e., tFDEs with hidden-memory variable orders. Due to
the lack of the monotonic L1 coefficients, we split each entry to a positive-preserving
term added by a high-order perturbation to facilitate the error analysis. In Chapter 5
we mathematically and numerically investigate a tFDE with a space-time dependent
variable order via the Laplace transform method and resolvent estimates. In Chapter
6 we analyze a variable-order sFDE and propose an indirect collocation approximation
to the model. By proving a generalized Gronwall’s inequality, sharp convergence rates
are obtained. In Chapter 7 we study inverse problems of determining the variable

fractional orders in tFDEs and sFDEs based on observations of the solutions.
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CHAPTER 2

VARIABLE-ORDER FRACTIONAL OPERATORS

In this chapter we introduce notations and spaces, and refer basic properties of
constant-order fractional operators. Then we prove mapping properties of variable-

order fractional operators to be used in subsequent chapters.

2.1 PRELIMINARIES

Let R and N be the sets of real numbers and positive integers, respectively, m &
NU{0} and 0 < < 1 < p < co. Let Z be a boudned interval and Q € R? (d = 1,2, 3)
be a simply-connected bounded domain with a piecewise smooth boundary 92 and
convex corners, and & := (1, ,x4) € . The inner product (-,-) on € is given
by (g1,92) = [qg1(x)ga(x)dx. Let LP(Q) be the space of the pth power Lebesgue
integrable functions on 2 with standard modifications for the case p = oo, and
Wm™P(Q) be the space of functions with derivatives up to order m in LP(2). Let
H™(Q) := W™2(Q) and H["(Q) be the completion of C§°(£2), the space of infinitely
differentiable functions with compact support in €, in H™(£2). For non-integer s > 0,
the fractional Sobolev space H*(f2) is defined by interpolation [3]. All the spaces are
equipped with standard norms and could be defined similarly on Z [3].

Let Lioe(Z), AC™(Z) and C™(Z) be spaces of locally Lebesgue integrable functions,
functions with absolutely continuous (m — 1)-th derivatives, and continuous functions
with continuous derivatives up to order m on Z equipped with the norm ||g||cm(z) =
maxo<p<m Sup;er |OFg(t)|, where 9,g(t) = ¢'(t) refers to the first derivative of g(t).
In particular, C'(Z) := C°(Z). Let C*(Z) be the standard Banach space of Holder
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continuous functions of order p equipped with the norm

l9(t2) — g(t1)|
— + sup
Igllen = llgllem + sup =5 ="

Furthermore, for a Banach space X endowed with the norm || - ||y, define C™(Z; X)
by the space of functions with continuous derivatives up to order m on Z belonging
to X equipped with the norm ||g|lcm(z.x) := maxo<k<m supyer |0Fg(+,¢)|x, and let
LP(Z; X) and H'(Z; X) denote the spaces of functions g such that ||g||x € LP(Z) and
lgllx, |0gllx € L*(Z), respectively, equipped with standard norms [3].

Let B := —V-(K(2)V) with V := (9/0a1, -~ ,0/0z,) and K (x) == (kyy(x)),_,.
a symmetric diffusion tensor satisfying k;; € C'(Q) and K,[¢|*? < ¢TK(¢ < K*[¢|?
for ¢ € RY and K* > K, > 0. Let {\;, ¢;}32, be the eigenvalues and eigenfunctions

of the Sturm-Liouville problem
Boi(x) = Noi(x), £ € Q;  ¢i(x) =0, & € . (2.1)

It is known that the eigenfunctions {¢; };°, of the Sturm-Liouville problem (2.1) form
an orthonormal basis in L*(Q2) and the corresponding eigenvalues {);}°; form a
positive nondecreasing sequence that tends to oo [24]. For any 7 > 0 define the

Sobolev space H*(Q) by [3, 77, 91]

7(Q) = {v e L) : Joly, == (Bo,v) = 3 N (0,60)? < oo}. (2.2)
i=1

It is known that H7(Q) is a subspace of H*(Q), and H°(Q) = L*(Q) and H2(Q) =

H} Q)N H*(Q).

Lemma 2.1. (Generalized Gronwall’s inequality [103]) Let 0 < Cy(t) € Lioe(a, b] and

Cy be a non-negative constant. Suppose 0 < g(t) € Liy.(a,b] satisfies

t

g(t) < Co(t) + 01/ g(s)(t — )" lds, Vte (a,b], 0<vy<Ll.

a

Then g can be bounded by

) < Colt) / (GLOD , _ ym=1¢y(s)ds, vt € (a,b].
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In particular, if Cy(t) is non-decreasing, then

9(t) < Co(t) By (CiT()(E = a)7), ¥t € (a,1],

where E, ,(t) represents the two-parameter Mittag-Leffler function defined by [75]

o0

)

teR, 0<peR, geR.
— pk’—l—q)

In this paper we use () to denote generic positive constants that may assume
different values at different occurrences. @Q;, @), and M; represent fixed constants
within each chapter but may be assigned different values in different chapters. For
convenience, we may drop the subscript L? in (-, )2 and ||-||z2 as well as the notation
2 in the Sobolev spaces and norms, and abbreviate W™P(0,T; X') as W™P(X'), when

no confusion occurs.

2.2 CONSTANT-ORDER FRACTIONAL OPERATORS AND THEIR PROPERTIES

For 0 < f < o0 and 0 < a < b < oo, the left and right fractional integral operators

1P and I are defined via the Gamma function T'(-) [44, 78]

1 T S 1 b S
JPg = ) /a G i(s))l_ﬁds, Alg = ) /x G ;Q(xgl—ﬁds’ (2.3)

based on which we present left and right Riemann-Liouville and Caputo fractional

Raa R

derivative operators of order 0 < a & N (denoted by ;*0%, *of, ,0% and .0, respec-

tively) by [44, 78]
R0Yg =05l %g, FOg = (=0u) 1y g,
W05 g = ol %00, 20pyg =1y “(—0:)"9,

(2.4)

where n := [a] + 1 with [a] € (o — 1, ] representing the integer part of a.

The following properties of these operators hold [44].

www.manharaa.com



Lemma 2.2. For 0 < a ¢ N, n=[a]+ 1 and g € AC"[a,b], the following relations

hold . .
« Guyla)(@ —a)"™
Raa — T aaa

(0 g (b — 2y
58”9_,;) T1+k—a)

+.0,'g.

Lemma 2.3. For 0 < f3,51,8; < oo and g € L'(a,b), the following relations hold

almost everywhere

alflajfzg - ajfﬁ—ﬂzg? mIbleIII)Bzg = mIbﬁﬁ_ﬁQg;
Rotlg =g, Foj.Ijg=y.
Lemma 2.4. For0 < f<oo,p,g>land 1/p+1/g<1+a (p#1andq#1 if

1/p+1/q=1+«), it holds for g, € LP(a,b) and g» € L(a,b)
b b 5
/ 91(2) oI go(x)da = / g2(x) 1) g1 (x)dx.
2.3 VARIABLE-ORDER FRACTIONAL OPERATORS AND MAPPING PROPERTIES

Variable-order fractional operators, in which the constant orders a and § in (2.3)-
(2.4) are replaced by functions n — 1 < a(z) < n for some n € N and 0 < () < 0o

on [a,b], are defined analogously [79, 60]

P S LN [C))
L= G e a
s, L gls)
0= ) e ey 25)

100y = 0T Wg, T g = (0.1 g,

aag(z)g — a[g—a(z)a;zg7 zal;l(it)g = x[gl—a(x)(_aw)”g
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Another class of variable-order fractional operators, which are also known as variable-

order operators with hidden memory, are given by [86, 87|

78(x) . . v (8)

0= | S e

@, . [ 9(s) s

w9 ) TEE) (s - a) e (2.6)

Ré:(w)g = (_ax)nzfgl—a(x)g’

x

Boe@g .= or Ir@g,
aég(x)g = afg—a@)agg, wé{f(x)g = xf:_a(m)(—(‘?m)”g.

For variable-order fractional operators, properties in Lemmas 2.2-2.4 no longer
hold [79, 76], which significantly complicates the mathematical and numerical anal-
ysis. Furthermore, the variable order in (2.5) assumes its current value at z for
x € |a,b], while in (2.6) the memory effect depends on the state at s, which exhibits
salient differences from (2.5) as we will see in the rest of the dissertation.

The following mapping properties of the variable-order fractional integral opera-

tors hold [98, 120, 121].

Theorem 2.5. Suppose 3 € C'[a,b] and 0 < B, < f(z) < 1. Then @)1, ,IP®1 ¢
CP@]a,b].

Proof. We prove this theorem by the following two steps.
Step 1: Analysis of .5 1. By the definition of ,/°®)1 we obtain

(- a)’® — (z — 2@ (z—a)’®

B(x)1 — -
ofe T(B@)5@) (Lt B)

(2.7)

As 1/T'(1 4+ B(x)) is continuously differentiable on = € [a,b], it suffices to analyze
(x — a)®®. With loss of generality, we only consider the case a < z; < x5 < b with

xe — 21 < 1. We begin with $(a) < 1 and apply the following splitting

(xz_a)ﬂ(m)_(xl_a)ﬂ(m) — ((xz_a)ﬂ(m)_(xQ_a)/j'(xl))+((xz_a)ﬁ(wl)_(xl_a)ﬁ(wl))_
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By the mean value theorem, there exists some z; < £ < x5 such that

’(x2 — a)ﬂ(a:?) — (.’L'Q — a/)ﬂ(ajl)

(2.8)
= ‘(xg —a)?© In(xy — a)B’(f)“xQ — 11| < Qe — x4].

We first assume x1 > a. For x5 — 21 < 21 — a, again the mean value theorem yields

‘(xz — )P — (zy — )P

= B(x1)|(§ = a)" " (s — 21)|

< Blan) (a1 — @)/ @y — )

= Blan) (21 — @) 2y — @) PO (@ — )

< Q(r1 — )" M s — 1) < Q(wa — 1) (w2 — 1) = Qwz — 31)"

where at the second “ < 7 we have used the fact that

‘(xl — a)f@)-8() < elFletapl@—a)n(z—a)l o Q. (2.10)

— ’e(ﬁ(wl)—ﬁ(a))ln(ml—a)

For xy — 21 > x1 — a, we apply the fact
Ys =yl < (2 —11)”, 0< iy <1p, 0<y <1 (2.11)
with y; = 21 — a, Yo = 2 — a and 7 = §(z1) to obtain

|(552 — )P — (21 — a)"] < (29 — 21)"") < Qg — 1), (2.12)

where we have used the estimate
(9 — 21)PE) PO — () — )P O@ ) < (g, ) Iler1as(er-0)
< (1 — a) Wlern@0) < @

We combine (2.8)—(2.12) with triangular inequality to prove the first statement in the
lemma for x; > a. (2.9) and (2.12) hold trivially for z; = a.

For B(a) = 1 we differentiate (z — a)?® with respect to z to get

@ (2 — )’ @B () In(z — a) + B(x)(z — )’ @1 € C(a,b].

11
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We take the limit at z = a™ and use 8 € C{a, b] to obtain

lim_ (2 — a)mm)}’ — lim (2 — a)’@B@ — Jim (@ -S@)nE—a) _ 1

z—at z—at z—at
Hence, (7 — a)?@~! € Cla,b], and so (z — a)’® € C'[a, b].
Step 2: Analysis of ,/°(®1. Different from (2.7), we could not evaluate /@)1
into a closed form due to the s-dependent of 3, cf. (2.6). Thus, we write the kernel

in terms of G(z) and use integration by parts to get

ds
/ L'(B(s))(x — s)t=86) / '(8(s))(z — s) (@)=B(s) (g — 5)1-5)
B d(x — 5)5@
- 5(x)r(5(5))(x - s)ﬁ(m)—ﬁ(S)
(z —a)f (z — 5)B-B@)
F(ﬁ(a) T l NEE) ]ds
(z—a’® (@) ﬂ O _T(B()B'(s)
ST 5w [ T(3(s))?
1 / g B = BN .
+F(ﬂ(s)) <B (s)In(e —s) + r—s >]d '

As 3 € C*a, b], the integrand on the right-hand side is continuous and so the integral
belongs to C'[a,b]. We use (2.11) to conclude that (z — a)?@ € C#@[q,b], which

completes the proof of this theorem. O

Theorem 2.6. Suppose 3 € C*a,b], 0 < B, < B(x) <1 and g € Ca,b] fory >0
and 0 < B, +~ < 1. Then %@ (g — g(a)), 2@ (g — g(a)) € CP1[a,b] and

127 (g = g(@))llestaap) + 102 (g = glaDllossiap < Qllgllertas

with Q = Q(a, b, B, 7).

Proof. We first estimate ,I7@) (g—g(a)). We assume a < z; < 1y < bwith zy—z; < 1

12
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and decompose alf(w) (9 — 9(a))]o=c, Iﬁ(w) (9 —9(a))|o=e, as

1 w2 g(s) — g(a) 1 = g(s) —gl(a)
/ (w2 — 5)' PG T(B(x1)) / *

g(s) —g(x1)|ds
+A1 F [$2))($2—8):|1 —B(x2) =0+ I+ I3+ 1y

We use T' € C'[B,,1], B € C'a,b] and s = x1 + O(xo — 1) (in I;) to obtain

[(B(w2)) = T(B(1)))

||g||L°°(a,,b) (:I:l — a)ﬂ(xl)

= T (B + 1) < Qllslimcenles = 2l
|[4| < QHgHC'Y[ab] / .’172—8 xz)_lds

_ Q||9||07[a,b (wy — 21)P TV B(y + 1, B(x2)) B.

- NEIES) = @lslloron(za =22
We bound /5 similarly by
Ll < Qllgllcrap (1 — @) | (w2 — a)’*2) (21 — )PV

T T(B(aa) B(x2) B(x1)
_ Qllglleriun (@ — )7 (@2 = )"0 |B(1) — )
- I'(B(x2)) B(x1)B(z2) (2.14)
Q||g||07[a:b]('r1 —a) _ q)\B(@2) _ — q)B=1)
T B)BEy |

< Qllgllotan| (w2 — @1) + (@1 = a)|(w2 — )°¢2) = (a1 — a) )] ].

For x9 — 21 > 1 — a, we use Lemma 2.5 to bound the second term by

Al _ (zy —a)P@)| < Q(ay — x1)P O+,

(21— a)’|(z2 — a)

For 9 — 21 < 1 — a, we use the mean-value theorem to obtain

13
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(1 — a)ﬁy‘(ﬂc2 —a)°#) — (2, — )’

= (&1 —a)|(€ = )" O(B(E) n(€ = a) + BE)(E — a) ") | (w2 — 21)
< Q(r2 — 1) + Qo — a) PO @y — 1) < Qag — 1) ™.

We incorporate the estimates into (2.14) to get || < Q|lgllcvfap (22 — z1)% .

For x9 — x1 > x1 — a, we use the substitution y = z; — s to bound I3 by

xr1—a x _ xl
|15 ‘/ gl = )‘;]( )[(:Ez—xl—i-y)ﬁ(m) ! yﬁ( }dy‘

< Q||g||cv[a,b] /0 yw[(m —x + y)ﬂ(m)—l + y/B(a?l)—l]dy ( |
2.15

To—T
< QHg”C’Y[a,b] /0 y”[(xz _ xl)ﬁ(xz)—l + yﬂ(wl)—l}dy
< Qllgllorap (w2 — 1)
Otherwise, we split I3 as an integral on [0, o — 1] and one on [zy — x1, 21 — d]
To—T
15| < Qllgllcran l /0 ((x2 — 3y 4 y)PEtrt yﬁ(m1)+7—1>dy‘

1 —a
/ ((wZ —x + y)IB(ZE2)+’Y—1 _ yﬂ(wz)-i-’y—l)dy‘
To—x1

_|_

+

zr1—a
/x <yﬁ(zz)+”y—1 _ yﬁ(ml)-l-’v—l)dyH = QHQ“CV[a,b](I:ﬂ + I39 + [33)_

2—T1
We bounded I3; in (2.15). We use the mean value theorem to bound I33 by

r1—a

Lz < ﬂ(wl +v— 1‘y,3($2) B(z1) l‘dy
To—T1
T1—a
< Q(xg — 951)/ YTy Iny|dy < Q(w2 — 21).
To—T1

Here we have used the following facts: If B(x2) > B(xy), then 0 < & < f(xg) — B(x1).
Then we have y* < (r; —a)® < Q. Otherwise, 3(x9) — B(x1) < € < 0. Then we have

ys < (19 — 21)¢ < (19 — 21)P@2)=8@1) < Q by a similar bound to (2.10).
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We use y = (z9 — x1)0 and Taylor expansion on # to bound I35 by

r]—

’132| < [yﬁ(xz)—l _ (y + 19 — :El)ﬁ(m)_l} Y dy

To—T1

< (IE1 _ a)ﬁ(wz)—ﬁ*/

T2—T1

r1—a

W =tz — )y dy
< Q2 — xl),@*ﬂ /oo [96*—1 —(1+ 0)5*_1}07(%

1
S Q(xZ _ xl)ﬁ*-M /oo 95*+7_2d9 — Q(:L-Z _ xl)ﬁ*‘f"y.

1

We incorporate all the estimates into (2.13) to finish the proof of .17 (g — g(a)).

The estimate of .17 (g— g(a)) can be carried out by similar techniques as above (cf.

[121]) and thus be omitted. O

Theorem 2.7. Suppose 8 € C'a,b], 0 < B, < (z) <1 and g € C[a,b] fory >0
and B, +~ > 1. Then 1@ (g — g(a)), 7@ (g — g(a)) € C'[a,b] and

o2 (g — gla)) | crap + 1129 (g = g() lorjas < Qllgllcriasy
with Q@ = Q(a,b, By, 7).

Proof. For g € C"[a,b] and 0 < 0 < 1, let §(s) := g(s) — g(a). Then the function
9o () = / " 3(s) (@ — 8)P D Nds € CVa + o, b] (2.16)

is differentiable with respect to = and the derivative g (z) can be bounded by
oz W[ @) n(@—s) - Blr) —1
/a (9(3) - 9(55)) (z — 5)1-5@) + (z — 8)2—ﬁ(1)]d8

90) e A —s) o) - g(a)
(x —ga)l—fa(””) + g(x)/a (x — s)1-Fl) s+ al—ﬁ(:v)g

w0 | In(z — s)| 1
< Qllgllcvia /a (x —s)7 (& — 5)B@ ' (z— S)z—ﬁ(w)]ds

e %ds + Uﬂ(w)ﬂl]
r — s)—P

< QHgHm[a,b] / (x — s)ﬂ(z)JrV_zdS + 1] < QHQHCv[aJ,], x € [a+ o,b].

gy ()| =

+(z — )Pt 4 /
a
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Consequently, its limiting function

P(z) = lim ¢ (z) = g / Fa) In( x_s)ds

o0+ (z — a)' =8 (z — s)1-A)

[t V%)@~@+ o) -1,

(LE )1—5(»’5) (x — 3) B(z)

is continuous on [a, b] and is bounded by

@) < Qllgllcres, = € la,b]

By Lebesgue bounded convergence theorem,

/:1/1(s)ds — lim [ g, (s)ds = lim [gg(x) — go(a+ a)}.

o—0t Ja+to o—0t
By (2.16)(2.17) and the definition of ,I7®) (g — g(a)), we conclude that

1

I8 (g — g(a)) = T(3(x))

/:1p(s)ds e CYa,b).

(2.17)

The estimate of ,17®) (g — g(a)) can be carried out by similar techniques as above (cf.

[121]) and thus be omitted.

16
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CHAPTER 3

VARIABLE-ORDER TIME-FRACTIONAL PDES

In this chapter we study the well-posedness and regularity of the following variable-
order tFDE model in multiple space dimensions, which was studied in [28] and ana-
lyzed in [96]

O+ k0" D+ Bu = f(zm,t), (x,t) € Qx (0,T); -
3.1

u(x,0) = up(x), x € Q; wu(x,t) =0, (x,t) € 0N x[0,T].

Here & > 0 represents a partial fraction. Then we prove an optimal-order error
estimate of the corresponding fully-discretized finite element scheme without any
artificial smoothness assumption on the solutions. Numerical experiments are carried

out to support the theoretical findings.

3.1 MODELING ISSUES

The tFDE
00fu — KAu = f(x,t), 0<a<l, (3.2)

was derived via a continuous time random walk (CMRW) under the assumption that
the mean waiting time has a power-law decaying tail [69, 70]. This explains why
tFDE (3.2) accurately describes the power-law decaying behavior of the subdiffusive
transport, which attracts extensive research [18, 30, 45, 47, 55, 52, 64, 65, 73, 74].
However, tFDE (3.2) exhibits nonphysical initial weak singularity as the first-order

time derivative of its solution behaves as O(t*7') near the time ¢t = 0 [63, 77, 85].
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This makes the error estimates in the literature that were proved under full regularity
assumptions of the true solutions inappropriate.

The reason is that tFDE (3.2) was derived as the diffusion limit of a CTRW in the
phase space as the number of particle jumps tends to infinity [69, 70], and so holds
for relatively large time ¢t > 0, rather than all the way up to the time ¢ = 0 as often
assumed in the literature. This explains why tFDE (3.2) exhibits nonphysical initial
weak singularity.

The mobile-immobile tFDE model
Ou~+koofu — KAu= f(z,t), 0<a<l (3.3)

was presented in [81] to improve the modeling of subdiffusive transport of solutes
in heterogeneous porous media. In this context a large amount of particles may get
absorbed to the media and then get released at later time. Consequently, the travel
time of the adsorbed particles gets significantly longer and deviates from that of the
particles in the bulk phase that undergo a Brownian motion [125]. Thus, the adsorbed
particles have power-law decaying tails and undergo subdiffusive transport. In (3.3)
the u; term models the Fickian diffusive transport of the particles in the bulk fluid
phase that consist of 1/(14k) portion of the total solute mass for some k£ > 0, and the
k ¢0fu term models the subdiffusive transport of the absorbed particles that consist
of k/(1 + k) portion of the total solute mass.

In the left figure of Figure 3.1 we show representative plots of the mean square
displacement (MSD) (z(#)?) for the one-dimensional tFDE (3.2) and the mobile-
immobile tFDE (3.3) on the space-time domain (z,t) € (—10,10) x [0,7] with
T = 100, incorporated with the diffusivity coefficient K = 0.01, the initial value
up(x) = e~ #/@x001) /(o1 % 0.01) and different values of k. We arrive at the follow-
ing observations: The mobile-immobile tFDE (3.3) with £ = 0 models the Fickian
diffusive transport of the solute while (3.3) with & — oo models the purely subdif-

fusive transport-of the.solute. (3.3) with £ > 0 models a combination of a Fickian
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Figure 3.1 Log-log plots of the MSD (z(¢)?) for integer-order and constant-order
tFDEs (left) and variable-order tFDEs (right). Left: the integer-order diffusion equa-
tion (curve 1), tFDE (3.2) with a = 0.3 (curve 2), the mobile-immobile tFDE (3.3)
with @ = 0.3 and k£ = 0.01 (curve 3), 1 (curve 4) and 100 (curve 5), respectively
(curves 3-5); Right: the variable-order tFDE (3.1) with a(t) given by (3.33) with
a(0) = 0.3, a(T) = 0.7 and k = 0.01 (curve 1), k =1 (curve 2) and k = 100 (curve
3), respectively [112, FIG. 1].

diffusive transport and a subdiffusive transport weighted by k. Moreover, in all these
cases the integral of the solutions u, i.e., the total solute mass, equal to the initial
mass. Hence, tFDE (3.3) can be viewed as a physically relevant extension of tFDE
(3.2) to the entire interval including the initial time ¢ = 0 [57, 81].

It was reported in the literature that in many applications the mean-square dis-
placement curves have clear slope changes, which cannot be modeled accurately by
constant-order tFDEs and requires variable-order tFDE modeling (cf. e.g. [87] and
the references therein). In the right figure of Figure 3.1 we present representative
plots of the mean square displacement (x(t)?) generated by the variable-order gener-
alization (3.1) of mobile-immobile tFDE (3.3) with the parameters chosen as before.
We observe from Figure 3.1 that variable-order tFDEs can model more complicated
anomalously diffusive transport processes, and naturally eliminate the nonphysical
singular behavior of the solutions that occurs in constant-order tFDEs at time ¢t = 0

[96].
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So far, numerical methods of variable-order tFDEs were derived or analyzed under
the assumption that the true solutions are smooth [87, 100, 105, 107, 126]. However,
there are very limited results on the well-posedness and smoothing properties of
variable-order tFDEs, as well as rigorous numerical analysis based on the true regu-
larity of the solutions. In the rest of this chapter, we focus on the mathematical and
numerical analysis of model (3.1) based on the following assumptions on the variable
order «(t):

Assumption A o € C'0,T] and 0 < a(t) < o* < 1 for some 0 < a* < 1.

3.2 WELL-POSEDNESS AND SOLUTION REGULARITY

We follow the integral equation approach in [96, 98] to prove the well-posedness and

solution regularity of the variable-order tFDE (3.1).

3.2.1 WELL-POSEDNESS OF AN INTEGRAL EQUATION

We first study the following integral equation, which is motivated by (3.16) below

v(t) =—k o[} Wy + kA [oftl_a(t)v] xe M4 g(t) — Agxe ™M —wore™, (3.4)
where % denotes the convolution on [0,¢], A > 0 and ¢(¢) and w, are given data.

Lemma 3.1. Suppose the Assumption A hold and g € C[0,T], then equation (3.4)

has a unique solution v € C[0,T] and
llv]lco.m) < QoMo, (3.5)
where My := AMwo| + [|gllcom and Qo = Qo(a*, k,T).
Proof. We define a sequence of approximations {v, }>°, on [0, 7] by

vo(t) == g(t) — Agx e —wore™,

Up_1 +EN [OItlfa(t)vn_l} x e N4 vo(t), n > 1.
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It is clear that ||vo||cor) < Q«Mo for some @, > 0. We subtract v,1(t) from

v, (t) for n > 0 and apply the estimates (t — s)* = < max{1,T} and

rold ™ (0 = o) k/ T |1—a t—l(s))cl«t)ds

P01 = a)(t =) Juu(s) = vaa(s)]
:k/ T —a()  T0—a s (8.7)

t|un(s) — vn_1(s)] .
<Q/ (1 —a*)( _S>a*d8:QOItl [V — V1]

to conclude that for ¢ € [0, T]

‘vn“(t) — vy (t ‘ = ‘k I~ a(t)(vn — V1) — kA [Oltl_a(t) (p — vn_l)] x e A

(3.8)
< Qoltl_o‘*wn — Up_1| + QA [oltl_o‘*|vn — vn_1|] x e M,

Here v_; := 0. We plug the bound for ||v||c1o,7) into (3.8) with n = 0 and apply

1 / vo(s) _ QuMot"™
CT(l—a®)Jo (t—s)  T(2-a*)

to obtain

‘vl(t)—vo(t)‘ SQ( ¢

QQ*MOtl_a*
< X
- I'2-a)

[od{ = [vol] + ™)

Q*M0(2Q)tl_
Fr(1—a*)+1)

(1 +)\*e’)‘t) <

Assume that for some n > 1,

QM (2Q) ")

iy Tl (3.9)

oalt) = vaa(1)] <

Then by (3.8) we obtain

[Uns1(t) = va(t)]
Q*MO(QQ)n+1

“2L(n(1—a*)+1)
QMo (2Q)"H (n+1)(1-a%) o) L -

— na a )\t(n+1)(1 a*) At
Hﬂn+Dﬂ—aﬂ+D< - re ™)

- Q*Mo(zQ)n-i-lt(n—l-l)(l—a*)
2 (n+1)(1 —a*)+1)

(OItl—oz*tn(l—a*) +\ [Oltl—oz*tn(l—a*)] * e—)\t)

B Q*MO(QQ)n-i-lt(n-i-l)(l—a*)
1 1 A < .
(1 A1se) < T(n+ )(l—a’) + 1)
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As a result, (3.9) holds for any n € N by mathematical induction. Noting that the

series defined by the right-hand side converges to the Mittag-Leffler function [75]

< Q*MO(QQ)jtj(l—a*)
Z L1 —a*) +1)

J=0

= QuMoEy -1 (2Qt'") < 00, t€[0,T].

The uniform limit v of the left side series [0, 7]

n—oo

o(t) == lim v,(t) = 2 (o) = va1(8)) + vo(t)

satisfies (3.5). We take the limit on both sides of the second equation in (3.6) and
use the expression of vg(t) to conclude that v solves (3.4). Since vy € C0,T], we
apply Theorems 2.5-2.6 and (3.6) to conclude inductively that v, € C[0,7] and
so v € C[0,T]. Let v € C[0,T] be another solution to (3.4) and it is clear that

e(t) == v(t) — v(t) satisfies
e(t) = —k oI} Ve 4 kAL *We] w e, (3.10)
We then apply

t le(s)|ds = t(t - S)Q*Mds < max{1,T} t Mds,
0 0 ( o (

t—s) t—s)
and the similar techniques in (3.7) to (3.10) to bound &(¢) by

1

. t ¢
6)] < @t lel + QA [T [ gyt

SQ/Ot%+Q/\/0t|8(8)|d8§62(1+k)/0t%-

We apply the generalized Gronwall’s inequality in Lemma 2.1 to conclude that e(t) =
0. Hence, the integral equation (3.4) has a unique solution v € C[0, 7] which satisfies

the stability estimate (3.5). O

3.2.2 WELL-POSEDNESS AND SOLUTION REGULARITY

We prove well-posedness of model (3.1) in the following theorem.
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Theorem 3.2. If Assumption A holds, ug € H™2 and f € H*(H") with k > 1/2

and r > d/2, then problem (3.1) has a unique solution u € C*([0,T]; H") and

luller oy < Q1<Huol\gs+2 + ||f”H~(ﬁIs)), 0<s<r (3.11)
where Q1 = Q1(a*, k, T, k).
Proof. We express u and f in (3.1) in terms of {¢;}2, [77, 85]

= > u(t(e). w() = (ul-1).0). 1<)

- (3.12)
f(wat) Zlfz( )¢l( )’ fz(t) = (f('?t)a ¢1)7 te [OaT]‘
By plugging (3.12) into (3.1) and using (2.1), we obtain
i [u;(t) + koD uy() + Mwa(t) — fi(t)] i) = 0. (3.13)

Hence, u is a solution to problem (3.1) if and only if {u;}°, satisfy the following

fractional ordinary differential equations (fODEs)

w(8) + kodf () + M) = fi(t), t € (0,T],

(3.14)
UZ(O) = Ug,; = (UO, ¢2), 1= 1, 2, s
We integrate the fODEs multiplied by e* to obtain
w;(t) = —(k OItl_a(t)u; - fl) x e Nt 4 uo,ie_m. (3.15)

We further differentiate (3.15) to obtain an integral equation with respect to u}(t) =

u(t)
v(t) = —k ol Dy 4+ kN oI Oy e ™ 4 — N fyx e Mt — Aitig et (3.16)

which is exactly the equation (3.4) with wy = ug;, g = fi, and A = \;.
We apply Lemma 3.1 to conclude that equation (3.16) has a unique solution
v € C[0,T] and (3.5) holds. Hence,

_uoz+/ (s)ds € C[0,T]
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solves (3.15) and so (3.14), and the derivations from (3.14) to (3.16) are justified.
The uniqueness of the C! solutions to (3.14) follows from (3.15) and (3.16).

For any k,n € N, we use Sobolev embedding and Lemma 3.1 to conclude that

S, t) == u;(t)d;(x) satisfies that for n — oo
i=1

9 n+k 2
/ . / ~ < / t .
[k = Sall ooy < @) > ue@|,
n+k ) n+k 5 5 )
<qQ Z )‘z”ui"Cl[O,T] <qQ Z )‘Z()‘iuo,i + ”fi”C[O,T]) — 0.
1=n+1 i=n+1

Hence, the interchange of the differentiation with the summation in (3.13) is justified,
from which we conclude that u defined in (3.12) belongs to C'(H?) and satisfies

problem (3.1). We use Lemma 3.1 to obtain for 0 < s <r
2 o0 e.¢]
[0 e, < QX Nlluillenpr < QXN (Nud,; + 1fillZ0m)

= Q(lluolZse + 1 F12m iy )-
which, together with u = [ dyu(z, s)ds + ug, yields (3.11).
Finally, let @ € C'(H") be another solution to problem (3.1). Then u — @ satisfies

the homogeneous analogue of (3.1) with the homogeneous initial condition. Then

(3.11) yields uw — u = 0, which completes the proof. O
In what follows, we investigate the regularity of 0y u, which will be used later.

Theorem 3.3. Suppose the Assumption A holds, ug € H* and f € H”(Iﬁ) N
HY%(L?) for some k> 1/2. If a(0) > 0, then dyu € C((0,T]; L?) and

ol < Qat = (luoll s + 1 Fllsregizzy + | Fllmenzsy), 0 <t <T.
If «(0) = 0, then Oyu € C([0,T]; L?) and

10uctall < Qa(Iluolla + I1.f | gwgizzy + 1 Nerrseary ), 0<E<T.
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Proof. We begin with a(O) > 0. We multiply equation (3.16) by ¢t and use t =

s+ (t — s) to split of,* (tv) to get the following equation in terms of tv(t)

_ 1 a(t)
_ _kOItl—a(t) k/ t S ( )ds
L1 —a(t) (3.17)

ot ol Dok e N ptfy — Nt fix e — ug Aite Mt

Since v € C[0,T] by Lemma 3.1, all but the first terms on the right-hand side are
in C1[0,T]. Let m € NT be such that m(1 — a*) < 1 and (m + 1)(1 —a*) > 1 (if
ma* = 1, we slightly increase the value of a*). Then we apply Theorem 2.6 to (3.17)
with tv € C[0, T] to conclude that tv € C'=*[0, T]. We repeat the procedure m times
to conclude that tv € C™1=[0, T]. As m(1 —a*) +1 —a* > 1, we apply Theorem
2.7 to (3.17) with tv € C™1=99[0, T] to deduce that oI} *"(tv) € C'[0,T] and thus
tv € C'0,T). Thus, v is differentiable for ¢ € (0,7] and so u; has a second-order
derivative for t € (0,T7.

To derive a stability estimate for v’ on (0,77, we differentiate (3.16) to obtain
V(1) = =k, o} " Yv + R, (3.18)

Here R denotes the derivative of all but the first terms on the right-hand side of

(3.16) that

R_k»\zo[tla ,U_k»\20[t1a U*e/\t"'f >\fz+>\2fz*€)\t+>\2 0,7+

We apply integration by parts to obtain

1—a(t 1=a(t)y, t(t—s)lma®
ot =i iy + v )

- tW'(s)]
< Ot—Wy(0 / ROl
which, together with

t—a(t) _ t—a(O)ta(O)—a(t) _ e(a(O)—a(t))lntt—a(O) < Qt—a(O)’
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and Lemma 3.1, implies

|d

_ to'(s)|ds
kdy oI}~ ‘< /—d il o i i =),
dhott = < Q [ 27 s + (Mol + 1 o)

The terms in R can be simply bounded by QM := Q (A?|Uo,i|+)\z‘||fi||C[0,T]+||fi'||0[o,T])

and we incorporate the preceding estimates into (3.18) to get
t 1o/ (s)|d
[/ (t)] < Q/ M + QM it~ t e (0,T]. (3.19)
0 (t—s)
We use Lemma 2.1 to bound |v'| by

o0 (QF(a*))n t .
v —a(0) — g —1S—a( ) P
| < QMit=* + QM ) T(na) /0 (t—s) Vd
- —a(0) o © (QF(Oé*)ta*)n
= QM (1 FI—a0) 2 I'(na* +1— a(0)

n=1

n=1

) S QMlt_a(O)a
and then use this estimate to arrive at the following stability estimate of ||0yul|
[l = 31l < Q0 (Mo + 3 (2 oy + o)
i=1 i=1 i=1

< QO (lluolya + 11 pegizay + 1 rrenczay) -
This proves the first estimate in Theorem 3.3. The proof of the second estimate can

be carried out similarly and thus be omitted. O

3.3 DISCRETIZATION AND ERROR ESTIMATE

In this section we follow [112] to present and analyze a fully-discrete finite element
approximation of model (3.1). Define a uniform temporal partition on [0, 7] by ¢, :=
Tn/N for 0 <n < N with the stepsize 7 = T'//N. Define a quasi-uniform partition of
) with mesh diameter h and let S}, be the space of continuous and piecewise linear
functions on this partition. Let I be the identity operator and I, : Hj(Q2) — S,(2)

be the Ritz projection operator defined by

K ()V(g —TThg), Vx) =0, ¥x € Sy, for g € Hy(Q). (3.20)
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The following approximation property holds [91]
|(7 =g < Qn?llgllu=, ¥ g € HA(Q) N H(Q). (3.21)

Let u,, = u(x,t,). We discretize d;u and 0Py at t =t, (1<n<N)by

n — Unp— 1 ftn
Dpu(, ) = Ot + By = U=ty 2 g (e, £)(E — ),
T T Jtp_1

-
I(1 = af(t,))

n 7% 57—Uk tk 8tu — 5'ruk
[ [ By
kgl l/tk-l (tn —t)otn) * to_r (tn — t)2(tn)

0 ?(tn)u(m’ tn) = 5g(tn)un + Rn = (322)

— 1—a(tn) - 1—a(ty) n
(ot Iz= a<t<n)) : ] oo = b = i)

" 1 "tk Oyu — Oruy
R,:=S R, ::—}j/ Gt = Ot gy
=T T = alt) & ey (e — 17

1 n ty 1 i t
e B 7 ., w00

(3.23)
(tn _ tkfl)l_a(tn) _ (tn _ tk)l_a(tn)

= 1<k<n<N\. 24
b 02— alty)r lshsns (324

b, has the following properties [85]

bon > bppo1 > >byp > ... by >0,
(3.25)

(1= a(tn)(tn — tr1) ™) < bpp < (1 —alty))(tn — t) "), k< n.
We plug (3.22) into (3.1), and integrate the resulting equation multiplied by x €
H} () on Q to get a weak formulation for problem (3.1) for any x € H(Q) for

n=1,---,N
(871, X) + (K () Vttn, VX) = =k(02 ", x) + (£ ), X) = (kR + En, X). (3.26)

We drop the local truncation error term on the right-hand side to obtain a finite

element scheme for (3.1): find U,, € S}, with Uy := ITug such that forn =1,--- | N
Vx) = k(82U ) + (F( 1) X), VX € S (3.27)
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3.3.1 ESTIMATES OF LOCAL TRUNCATION ERRORS
In this subsection we prove the following two lemmas.

Lemma 3.4. Suppose the Assumption A holds, « € C'0,T] and uy € HY, f €

H'(H?) N H2(L?). Then the following time-step wise estimates hold
1]l < QQon *ON*O~1 IR, <QQon ' N*""', 1<n<N  (3.28)

with Qo = ([luoll s + I/l s g2y + 1S ey

Proof. We begin with «(0) > 0. We use the mean-value theorem to get for n > 2

—a(0)

10 6750 < (1 - a ()07 < Q((n—1)/N) " < Q(w/N) 7. (3.29)

We apply (3.29) and Theorem 3.3 to bound E,, in (3.22) by the following to get the

first estimate in (3.28)

|Ea < QQO/t —oO)(t — t,_)dt < QQy /t" O gt

tp—1
QQor' ) = QN1 n=1
QQo(t172@ — 117519) < QQun *ONO1 > 2.
We apply Theorem 3.2, which guarantees the boundedness of ||u||c1((o,7;22), the first

equality in (3.23), and the estimates (t, — t)~*tn) = (¢, — )7 (¢, — t)* —oltn) <

*

max{1,T}(t, —t)®

oo ol sl
QQor ™", n=1,
QQo(t, — 1) ™7 < QQo (%>_Q*T, n>2.

We use the second equality in (3.23) and Theorem 3.3 to bound R, ,, for n > 1 by

and (3.29) to bound R, ; in (3.23) by

%] <

< QQ /0 Yt — 1) dt <

HRn nH < QQOt a(O) / — a(t" dt < QQ t, a(O) 2-a”

- QQOn—a 1 - QQO <£>2—a(0)—a*'
[—a(0)  N2—a* — p2-a* \ N
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We bound the rest of R, in (3.23) for n > 3 in the following two parts

n—1

A a(0) [ —a*
<QQ Y.t / (t, — )" dt

k=[n/2]+1 o1

n—1
Z Rn,k

k=[n/2]+1

< QQUE [ 1) < QO £
[n/2]

. n\ -0 1 /n\1l-a QQO n \ 2—a*—a(0)
< — — (= < —
_QQO<N) N(N) = n <N> ’

WA o e LEN
<Q@oztklr/t (tn =07t < QQ0 3 "7t — 1)
k—1

[n/2]

2 Fons

[n/2] [n/2] k—a(O) —a* 2—a*—a(0)
A —a(0)_2,—a* A n QQO ( n )
< QQ E t t < QQ E < — .
= e T = WO = N2a@-or = p \N

We incorporate the preceding estimates to obtain the second estimate in (3.28) and

thus complete the proof of the lemma. O

Lemma 3.5. Suppose the Assumption A holds and ug € H*, f € H'(H?). Then the

following estimates for n, = (I - Hh)un hold with Qy == |Juo|| 74 + 1 g iy

Sy gy = 5, 18] < QO 180 112y < Q12

Proof. We use (3.21) to bound

5777"“ for r > 1 by

1
| =

tn N
/t (I - Hh)atUdtH < QP |ullcrorme) < QR

We then use (3.23) and (3.24) to get

n tn n N
7InH = H Z b (I — Hh)/t wdt|| < Qh2”u“01([0,T];H2) Z b T < QQ1R°.
k=1 n—1 k=1

We thus finish the proof of the lemma. O

3.3.2 OPTIMAL-ORDER ERROR ESTIMATE OF FINITE ELEMENT SCHEME (3.27)

We prove the error estimate without any artificial regularity assumption of the true

solution.
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Theorem 3.6. Suppose the Assumption A hold, ug € H* and f € H'(H?)N H*(L?).
Then there is a positive constant Q = Q(k,T,a*, ||a|lc1o1r)) such that an optimal-

order error estimate holds for finite element scheme (3.27) to model (3.1)

1T =l oo o212y < QUloll o + | Fll iy + 1 F ey ) (7 + 7).

Proof. We split the error w,, — U, = &, + 1, where &, := Il,u, — U,. The estimate of
1, 18 given by (3.21) so we remain to bound &,. We subtract (3.27) from (3.26) with

X = &, and apply (3.20) to obtain the following error equation in terms of &,

(0:6n60) + (K'VE,, VE,) = —k (0208, 6,) — (K[R, — 82 n] + By — 6.0, ).
(3.30)
We use & = Uy — IT,up = 0 to rearrange 02(n)¢, by
n—1
02, = by — > (bn,k:-‘rl - bn,k>§k

k=1

and reformulate (3.30) as
(&n:60) + 7 (K VE, V&) + Thbon(€ns &)
n—1
= (én—ly én) + 7k Z (bn,k—i-l - bn,k) (gk:: é-n) - T(k [Rn - 5f(t")77n] + En - 57'77?27 En)
k=1

We use (3.24)-(3.25) to obtain the following

n—1
(1+ 7hbon ) 16ll < 1€l + 7% D" (b — bok) [1€xll + G, (3.31)
k=1
where

G = Kl| Rl + KIS + | Enll + 0774

It is clear from (3.31) that ||& || < 7G;. Assume

lémll <73 °G;, 2<m<n—1. (3.32)
=1
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Plugging (3.32) with 2 <m < n — 1 into (3.31) yields

n—1
(1 + 7k ) 1nll < sl + 7 Y (Bngsr = bu ) 16kl + TG
k=1

n n—1 k
<STY G4 kY (bukss — bak) DGy
j=1 k=1 j=1

n

< (1 kr(bon = bon) )7 DGy < (14 krbo )7 Y G
j=1

j=1
Thus, (3.32) holds for m = n and so for any m > 2 by mathematical induction.
We remain to bound the right-hand side of (3.32) for any 1 < m < N. We use

Lemmas 3.4 and 3.5 to conclude that

N N
7Y (1Bl + [ Rall) < QQor > (n O N*O71 4 =" N*"71) < QQyr,
n=1

n=1

N N
T3 (18]l + 105 ma])) < QR Y~ 7 = QO
n=1

n=1
with Qo and Ql introduced in Lemmas 3.4-3.5. We incorporate these estimates into

(3.32) to complete the proof. O

3.4 NUMERICAL EXPERIMENTS

We numerically investigate the regularity of the solutions to the variable-order tFDE
(3.1) and its dependence on the behavior of the variable order a(t), as well as the

convergence behavior of the finite element scheme (3.27) [112].

3.4.1 BEHAVIOR OF THE SOLUTIONS TO VARIABLE-ORDER TFDE (3.1)

Let = (0,1)3, the time interval [0,7] = [0,1], k = 1, K = 0.001I with I being the
identity matrix of order three, ug(z,y, z) = sin(rz)sin(ry)sin(nz), f = 0, and the

variable order «(t) is given by

(1) = a(7) + (a(0) — a(1)(1 - &~ BETCZIDN (335

We present the numerical solutions U, (1/2,1/2, z) to the variable-order tFDE (3.1) in

ses: (a(0),a(1)) = (i) (0,0.2); (i) (0.4,0.6); (iii) (0.7,0.9).
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Figure 3.2 Plots of the finite element solutions U,(1/2,1/2, z) (the first row) and
the first-order time different quotients .U, (1/2,1/2,2) of the numerical solutions
Un(1/2,1/2, z) (the second row) to model (3.1) for the cases (i) left, (ii) middle, and
(iii) right [112, FIG. 2 and FIG. 3].

In the numerical experiments we use a uniform spatial partition of a mesh size h =
1/32. To better capture the singularity of the solutions near the initial time, we use
a graded temporal mesh ¢, = T'(n/N)" of N = 64 and r = 2/(1 — 0.7) ~ 6.7, which
is determined by the most singular case of «(0) = 0.7 [112]. We observe that the
solutions are smooth in all cases. The time derivative of the solutions in case (i) is
smooth near the initial time ¢ = 0, while exhibits singularities near the initial time

= 0 for cases (ii) and (iii), and the singularities get stronger as «(0) increases. These

observations numerically justify the analysis in Theorems 3.2-3.3.

3.4.2 CONVERGENCE OF THE FINITE ELEMENT SCHEME
We investigate the temporal convergence behavior of the finite element scheme to the

variable-order tFDE (3.1).

Example 1 Let Q = (0,1), [0,7] = [0,1], k(¢t) = 1, K := K = 0.001, f = 0, and

We use the numerical solutions U under a uniform spatial
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partition of 4 = 1/32 and a uniform temporal partition of 7 = 271 as the reference
solutions. We measure the convergence rate x of the numerical approximations by
U —U]| o022y < Q7" We present the numerical results in Table 3.1 and observe

the first-order convergence rates, which confirms the error estimates in Theorem 3.6.

Table 3.1 Temporal accuracy of finite element scheme under A = 1/32 and different
(a(0), (1)) [112, Tables 1-3].

7 (0,04 r (04,06) ~ (0,07) & (0.7,09) &
1/  5.63B-04 4.64E-04 5.66E-04 3.25E-04

1/16 2.79E-04 1.02 2.37E-04 097 2.80E-04 1.02 1.75E-04 0.90
1/24 1.82E-04 1.05 158E-04 1.00 1.83E-04 1.04 1.20E-04 0.93
1/32 1.33B-04 1.08 1.18E-04 1.01 1.35E-04 1.07 9.08E-05 0.96

Example 2 We carry out similar numerical experiments to the variable-order tFDE
(3.1) in three space dimensions. Based on Theorems 3.2-3.3, we take u(z1, xo, x3,t) =
272 sin (272, ) sin(27x,) sin(27x3) and the right-hand side term f is evaluated ac-
cordingly. Other data are chosen to be the same as in Section 3.4.1. We measure
the temporal convergence rate « such that |[u — Ul (o p,r2) < @7". Uniform spatial
partition of h = 1/32 is used and we observe the first-order temporal convergence

from Table 3.2, which again coincides with the conclusions in Theorem 3.6.

Table 3.2 Temporal accuracy of finite element scheme under A = 1/32 and different
(a(0), (1)) [112, Table 6.

7 (0,06) r (04,06) ~ (0,04 & (02,04 &
1/8  1.66B-02 1.53B-02 1.88E-02 1.82E-02

1/16 8.32E-03 1.00 7.68E-03 1.00 9.42E-03 1.00 9.12E-03 1.00
1/32 4.14E-03 1.01 3.82E-03 1.01 4.70E-03 1.00 4.54E-03 1.00
1/64 2.06E-03 1.01 1.89E-03 1.02 2.33E-03 1.01 2.25E-03 1.01
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CHAPTER 4
VARIABLE-ORDER TIME-FRACTIONAL PDES wiTH

HIDDEN MEMORY

In this chapter, we study the following hidden-memory variable-order tFDE model
with a more general variable-index space-fractional Laplacian operator [60, 86, 87,

114, 116]

By + k g0M Dy + BEDy = f(x,t), (x,t) € Qx(0,T];

(4.1)
u(x,0) = ug(x), x € QY  u(x,t) =0, (x,t) € 00 x [0,T],
whre the operator B?®) is defined by [3, 77, 91, 116]
B0y =S N0, ¢, Vo= (v,0:)¢; € L*(Q) (4.2)
i=1 =1

and the ((t) satisfies the following conditions:

Assumption B g € C'[0,T] and 0 < 3, < B8(t) < 8* < 1.

Compared with the proofs in Chapter 3, the corresponding mathematical and
numerical analysis will be significantly affected due to hidden-memory variable order.
To be specific, the analysis is much more complicated as the kernel of the fractional
operators can not be integrated into a closed form (cf. Step 2 in the proof of Theorem
2.5). In numerical approximations, the L-1 coefficients b, lose their monotonicity
(cf. (3.25)) with respect to the index k due to the impact of the hidden memory,
which played a crucial rule in the corresponding error estimates (cf. the proof of
Theorem 3.6). Therefore, Novel techniques have to be developed to accommodate

these issues.
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4.1 WELL-POSEDNESS AND SOLUTION REGULARITY

Similar to Section 3.2, we apply the spectral expansion to the solution and the right-

hand side term to obtain the following equivalent fODE system
ul(t) + ko ui(t) + N Dui(t) = fit), t e (0,7,
U,(O) = Ug,; = (Uo, ¢z)7 1= ]-7 27 e
We integrate the fODEs multiplied by exp(Jif A ™ dr) to obtain
o Jo M dr F—a(0) — [P gy
ui(t) = / ’ [ (g u}) - fi(e)]de Fugge” o T (4.3)
We differentiate (4.3) to obtain an integral equation in terms of v(t) = u}(t)

~ t t r
(O) = a0+ kO [ [N 1o
(4.4)
A = X [ TN 0 — g O A
0

As the analysis of this integral equation, and thus the well-posedness of model (4.1),
can be carried out in parallel with the proofs in Section 3.2, we refer these results

from [114] without proof and focus our attention on the estimate of Jyu.

Lemma 4.1. If the Assumption B holds, there exists a constant Ko > 1 that is

determined by {\;}52, but is independent of any particular \; such that

_ [ty B(r) _ ty\B(r)
)\iﬁ(t) ﬁ(s)e fs A dre < Kye o.5fs A; dr’ 0<s<t<T.

Proof. Aslimy_ || 3| crjor Int/(0.5t%) = 0, there exists a constant K7 > 1 such that
0.5¢% > ||B]lcrjory Int on [K7, 00). Moreover, since {\;}$2; increases monotonically
to infinity, there exists a positive integer I such that \; > K; for ¢ > I and \; < K,
for ¢ < I. Thus, for ¢ > I we have

t T t r / t r
)\f(t)_ﬁ(s)e_ JIXDar _ = [TO]7 g ) In X < 05 JIXPar

For ¢ < I we simply have

_ tyB(r) B(r)
)\f(t) ﬁ(s)e—fs A g < Kope —05f Vs dr K, —max{l max  sup )\B B(s)}.
1<i<I g<s<t<T
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Lemma 4.2. If Assumptions A-B hold and f; € C[0,T], equation (4.4) has a unique

solution v € C[0,T] and

lollcom < QoMo, Mo = X @luos| + [l fillowr, Qo= Qo(a”, B, 87k, T).

Theorem 4.3. If Assumptions A-B hold, uy € H'*2°©) and f € H(H) with v >
d/2 and k> 1/2, then problem (4.1) has a unique solution u € C*([0,T]; H?) and

ltll oo psizsy < @1 (Ilttoll oo —sorss + I1F | e gpmant—2se.1)),

HU”CI([O,T];FIS) < Q1(||U0||F12ﬁ(0)+s + ”f”Hﬁ(O,T;ﬁS))? 0<s<~.

Here Ql = Ql(a*aﬁhﬁ*a kaT7 H)'

Theorem 4.4. [114] Suppose Assumptions A-B hold, ug € H'™" and f € H*(H"?")N
H“(H") for some v > max{0,d/2 — 26*} and x > 1/2. If a(0) > 0, then
dpu € C((0,T]; H?*) for 0 < s <~ and

Ol e < ta_a(0)<||U0||ﬁs+4ﬁ* [ g rsvasey + ||f||H1+~(ﬁs)), 0<t<T.
If a(0) = 0, then dyu € C([0,T]; H®) with the global estimate

(| Ovsu|

s < Q2(||U0|

s+ || fll gmgrasese) + ||f||H1+”(lEIS))7 0<t<T.

Here QQ = QQ(O‘/*7 ||Oé||Cl[O,T]aB*aB*7 kaTu H)'

Proof. We begin with a/(0) > 0. We multiply equation (4.4) by ¢ and use t = s+ (t—s)

to split of; " (tv(s)) to get the following equation in terms of sv(s)

_ )
to = —kol;} " (su(s k:/ (t=s) v(s)ds
['(1— a(s))
+t / A0 Jo ¥ )d’"kof;‘“ vdf + t f;(t)

t/ N = JyXTdr £ 0)d0 — tug NP De Jo X

Since v € C[0,T] by Lemma 4.2, all but the first terms on the right-hand side are

pply the bootstrapping procedure like that below (3.17) to
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conclude that v is differentiable for ¢t € (0,7]. Consequently, u; has a second-order
derivative for t € (0, 7.

To derive a stability estimate for v’ on (0, 7], we differentiate (4.4) to obtain
/ #1—a(t)
o (t) = =k (oI} *"v) +R, (4.5)

Here R denotes the derivative of all but the first terms on the right-hand side of (4.4)

Fl1—a( ! t)1 )\ o
Ri=kXol; / s — wfdf A fr-®)up 1 fi(t)
elo
26(t) B(t) pr 26(t) B(t) pr
_\B® ¢ PN NS () InA SN NS () I
)\i fl (t) + / ef; )\f(r)dr f’t(e)de efot )\f(r)d’r‘ Ui -

—af(t)

To differentiate the weakly singular integral Oftl v, we first integrate the v in

OIAtl o) by parts. However, the kernel (t — s)~**) cannot be integrated in a closed

form. Instead, we integrate its leading part (¢ — s)~*®) by parts to obtain
S, / 8)1 () _. 1o (t)
11— ot I'(l—a(s — g)s)—a®) 1—a(t)
()¢t ol 1—a(s))a/(s)v(s
(t) = +/ 1ol I'( ())(2()
(1 — a(0)) I'(1—a(s))

V) ) (et —a)]
T a0) ru—a@»<()1“ A )P'

We consequently get

ey ) Om)
(b7 ) = 1205 * = et
! —M [l=e® —a(sNHv'(s) — (1 — a(s))a/(s)v(s)|In(t — s
0 = T ol (= ) (6) - (1 = aleae)0(s) e~
P=al)] [ als)a) = als)
ru—MﬁJ “[()+ ) s ])

We incorporate this with

Hn(t _ S)‘(t _ S)(l ax)/2 Q
= max{1,T} (t — 5)(Ta)2 < (t — s)(+a)/2
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and

|1nt—s)|
o T(1—a(s))(t —s)2e)

< @( /0 v )ldy + |v<o>|) [ Gt < () W wlds+ o))

as well as Lemma 4.2 and similar techniques in (3.7) to bound the second term on

s)|
)a(s

S

V' (y)dy + v(0)|ds

the right-hand side of (4.5) by

h(of, )<Q/ %d + (N Nuol + || fillcpm ).

We apply Lemma 4.2, Lemma 2.5 and the following estimate based on Lemma 4.1

t t \B#)—B0) \B(0) t B(6)
)\B(t)/ e_f;)\ﬁ(r)drdez/ A t A deg/ KO)\t do
0 0 ofy M Mar 0 05 [y AP@dr

0=t
t B
2 Fk’ —0.5f9 A (r)d'l

_ 2K0(1 _ 05y A‘“”)0”) < 2K,
0=0

to bound R in (4.5) by

PO Nt n N
r 0
efg i
2280

[

. b A
k(AP D ey — / k(0) 2 [ d@'
0

< Qv <)\f(t)oftl_a(t)1 +/ OI;_Q(O)ldG)
e

t AN Ddp

B*
< s
< Qllvllepm s (H 0 SN Dar

) = @ (WOuoul + I filleoa)

and

EAZPO _ O g1y n ), MO — X0 (t)n A,
= NOL) + [ SR A (0)d0 e
e o N edo X dr ’

< Q(A?ﬁ*|u0,i| + 2N fill ooy + “fi”Cl[O,T]> =: M.

We incorporate the preceding estimates into (4.5) to get
/ |d5 a(O)
(1)) _Q/ L OMEO, e (0,T).

The rest of the proof can be performed in parallel with those under (3.19) and is thus
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4.2 DISCRETIZATION AND ERROR ESTIMATE

We follow [114] to present and analyze a spectral Galerkin approximation to model
(4.1). Define a uniform temporal partition on [0,7] by ¢, := n7 for 7 := T/N and
0 <n < N. Let Sy := span{¢;(z)}M, with {¢;}2, being introduced in (2.1). Let

Uy, = u(x, t,), we discretize dyu and oéta(t)u att =1, for 1 <n < N by

—_ tn
Ouu(, ) = bt + By = % D, )t — by 1),
tn—1
jolta),, t dsu(w, s) _ caftn) ;
oo Z/ T = a(s)(t, —5)e@ s = 0 tn + fn 4 I
Oruy, th dsu(x, s) (4.6)
-2 l s T =)t =917y, T = a(s) (b — 57
t t —
/ k Osu(x, s) gs+ " Osu(x, s) — O, up .
tey D(1 — a(ty)) (t, — )™t tooy D(1 — aty))(t, — )2t
Here 0%y, R, and R, are defined by
5oy, = Z b e (Up — Ug—1),
k=1
L 1 s = (tn — b)) — (¢, — ty) 1ol
wh T o T — atn)) (t, — )o@ ©° = T(2 — a(ty)r ’
AN~ [ dsu(z, 5) dyu(z, s)
fin = k; i [F(l —a(9))(tn — 9)*@  T(1 = a(ty))(t, — 5)2@) o
" "otk Osu(x, s) — O up
R, = R,. = S
kgl b = S T(1 = alty)) (t, — s)ott)
o[ ! “ L (s, 0)dodz | d
= 2 /tkl TF(l — O[(tk))(tn — s)a(tk) /tk1 : 99U(:E7 ) zZ|ds.

We plug (4.6) into (4.1), and integrate the resulting equation multiplied by x €

IrIB(Q) on € to obtain the following equation for n =1,2,..., N
(Bt ) + BB, ) + (A5 20, A2

= (f(a tn)a X) - (k(tn)(Rn + Rn) + Ena X>> X € ﬁﬂ* (Q)
We drop the last right-hand side term to obtain a spectral Galerkin scheme for prob-

(4.7)

lem (4.1): find U,, € Sy for n =1,2,..., N, with Uy(x) := Iue(x), such that

se(tn)

)+ (APERU, AP = (f (1), %), X € S (4.8)
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Here IT; : L? — Sy is defined by Ilyrg := M (g, ¢i)és, Vg = 32, (g, ¢i)ps € L2.
By (4.2) and (2.2), for any g € H” with v >0

lo-Tg|* = > (0607 = 3 A7N(9.00° < Ahalgle

i=M-+1 i=M+1

which yields [8, 82]
lg—Tug|| < Maililglans Vg€ H. (4.9)

The estimates of the truncation errors can be carried out by similar techniques as

those in 3.3.1 and thus we omit the proof. Detailed derivations can be found in [114].

Lemma 4.5. Suppose Assumptions A-B hold, uy € H**" and f e H“(I:IQB*) N

HY(L?) for k > 1/2. Then the time-step wise estimates hold
1Bl < QQo(N/n)* O, ||Ra]l < QQor, | Rull < QQo(N/n)*

for 1 <n < N with Qq = ||uo|| a5~ + [ f 1 g azey + 11 [mes(z2)-
If Assumptions A-B hold, o € C'[0,T], uog € H250)0+s gnd f € H“(]:]s) for

k>1/2 and s > 0, then n, = ([ - HM)u(:c,tn) are bounded by

. A _8/2 a(ln A _5/2
||57’77nHE°°(0,T;L2) = 12%}(]\[ 5T7ZnH < QR1Ay4, ||5T(t )nnHEOO(O,T;L?) < QQiAN -
Here I is the identity operator and Qy := ||uo|| 2500+ + 1 e sy -

4.2.1 OPTIMAL-ORDER ERROR ESTIMATE OF SPECTRAL (GALERKIN SCHEME (4.8)

We note from the expression of b, below (4.6) that the power and the denominator
all depend on ¢, due to the hidden memory impact of the a(s) in problem (4.1).
Consequently, b, ; lose their monotonicity with respect to the index k. Recall that
in the context of constant-order tFDE (3.2), « is constant. Hence, the corresponding
coefficient b, ;, is monotonically decreasing with respect to k, which played a crucial

rule in the corresponding error analysis [85, 89]. In the context of variable-order tFDE
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(3.1), the power and the denominator of b, , depended only on n. Hence, at any time
step t,, by still enjoyed the monotonicity. Its clever application contributes to the
error analysis of an L-1 temporal discretization of problem (3.1) [112].

To overcome the difficulty that b, ;, lose their monotonicity in the current context,
we decompose each b, ;, — b, x—1 as the sum of a positive-preserving term and a high-
order perturbation. To do so, we introduce an auxiliary sequence {Bnk »~1 defined

by
~ 1 tr 1
bn = = d
* T Jtg—1 F(l — Oé(thrl))(tn — S)O‘(tk-H) 5

Lemma 4.6. There is a positive constant Qg > 0, independent of n, N, T such that

n—1

bn,k—f—l > Bn,ka 1< k <n-— ]-a Z |6n,k - bn,k| < QZa 1<n< N. (410)
k=1

Consequently, the following holds for any non-negative sequence {zx}&_,

n—1 n—1
Z (bn,k-i-l - bn,k) 2k < Z (bn,k-i-l - bn,k + |bn,k - bn,k‘) ’Zkla 1<n<N. (4'11)
k=1 k=1

Proof. By the definitions of b, ; below (4.6) and l;nk we have

bn,k—l—l - bn,k

e, T .
o\ T(L = altpyr))(tn — s)eerd) Sy T(1 — atpsr)) (tn — 5)Cr)

1t 1 ( 1 1
T they D(1 — aftger)) \(t, — s — T)a(tk-H) (tn, — S)Oé(tk+1)

We use the mean-value theorem and

)ds > 0.

|In(t, —s)| (t— 5)>" (0 |In(t — s)| < max{1,T} |In(t — s)|

CEETCEE (L= s) (t =)
_ [In(t — 5)|(t = )"/ Q
= max{1, T’} (t — S)(1+a*)/2 < (t — 3)(1+a*)/2

to get
. 1 1
b = ol = F‘ /t C(1 = a(tys)) (b — $)7@) T(1 = a(t))(t, — 5)°0)
w_TA-aQ() It =8)o(Q) aoy,
tp—1 P2(1 - a(g))(tn - S)Q(C) (1 - a(g))

2Q[(tn—te1) * Eh

ds

~(ta—t) 7]

)
1—a*
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* 1—a*

ni bk — bkl < an [(ta — tk_l)lfTa —(t.—t) * ] 2@
k=1 k=1

The inequality (4.11) follows from b, 441 > lA)n,k in (4.10). O

Finally, we are in the position to prove the main theorem of this paper.

Theorem 4.7. Suppose Assumptions A-B hold, ug € H™>{46°.280+s} qnd f e H*
(H™ax20" s HY45(L2) for k > 1/2 and s > 0. Then an optimal-order error estimate

holds for the spectral Galerkin scheme (4.8)
U - u||£°°(0,T;L2) < Q(QOT + Ql)\;ﬁ)

Here the positive constant Q = Q(a*, T, ||al|crjo.1), k), and Qo and Q1 are introduced

in Lemma 4.5.

Proof. We split w,, — U, = &, + n, where &, := lyu, — U,, with II,; defined below
(4.8), and n,, was bounded in (4.9). Hence, we remain to bound &,. We subtract (4.8)

from (4.7) with x = &, to obtain the following error equation in terms of &,

(0rbns &) + (APOPg, APDPE) + k(620¢,, 6,)
(4.12)

= (k[Rn + Rn - 5g(t")77n] + En - 5Tn77na fn)
We use & = Uy — Hyrup = 0 to rewrite 620, = b, &, — Sr—] (bn,kﬂ — bn,k)gk and
reformulate (4.12) as

[1 + ka"»"] ”én”2 + 7'”,45(’5)/25””2

n—1
= (gn—la gn) + Tk Z (bn,k—l—l - bn,k) (ék» gn)
k=1

+7 (k[ Ry + Ry — 620, ] + By = 600, 6.

We use Cauchy inequality to cancel ||, || on both sides and use (4.11) to obtain

(1+ 7k ) 10l
n—1 R R (413)
< Nénsll + 7> (bn,k-i-l — b + b — bn,k|) 1€kl + 7Gn,

k=1
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where G, is defined by

G, = k:( R,

[ ]+

) + 1] +

5777””'

By (4.13) ||&]] < TGy < 7(1 + 2Q2k7)Gy with Q, given in (4.10). Assume

[&nll < A D> Gy, Ay = 7'(1 + 2Q2k7)m, 1<m<n-1 (4.14)
=1
We plug (4.14) with 2 <m <n — 1 into (4.13), use Ay > Ax_1 > --- > A; > 7 and
n—1
> <bn,k+1 — b + |bng — bnkl)
k=1

1
(bn,k—I—l - bn,k + (bn,k: - bn,k) — (bn,k - bn,k) + |bn,k: - bn,kl)

3
|

o~
Il

n—1
S <bn,k+1 - bn,k) +2 Z |bn,k - bn,k| S bn,n + 2Q2 (USiIIg (410))
k=1 k=1

3
_ =

to arrive at the following bound

(1 + kanm)”&t”

n—1 n—1 n—1
< At X Gy 7h| At 30 G| S (buent = b+ [ = bual) + G
k=1

j=1 j=1

< At Y Gy Th | Auey 30 G (bun +205)
j=1

=1

= |:An_1 Z GJ:| (1 + kan’n + 2k(tn)QAQT>
j=1
We thus obtain

n QkQQT
W< A G| (1 T
I —[ 1; JK +1+kan,n)

S |:An—1 Z GJ:| (1 + 2@2]{77') - An Z Gj.
=1 =1
Thus, (4.14) holds for m = n and so for any m > 2 by mathematical induction.
We remain to bound the right-hand side of (4.14) for any 1 < m < N. As

(14 2Q2k7)N < Q, it suffices to bound 7, G,,. We use Lemmas 3.4 and 3.5 and

the fact that > n™ < QN'~7, with v = a(0) or a*, to conclude that
N . N a(0) N a* A
> (@r|(3)+(5) +1f o)

n=1 n

doT + Ql)\;ﬁ)

N
TZ G, <Qr
n=1
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We combine this estimate and (4.9) to complete the proof. ]

4.3 NUMERICAL EXPERIMENTS

We follow [114] carry out numerical experiments to investigate the regularity of the
solutions to model (4.1) and its dependence on the behavior of the variable order
a(t) as well as the temporal convergence of the spectral Galerkin approximation to
problem (4.1). In numerical experiments we assume a rectangular domain 2 = (0, 1)%,
and the spectral Galerkin subspace

M, M

Sy = span{(bil(ajl) e (bid(xd)} (4.15)

i1=1, ig=1"
Here ¢;(x;) := v/2sin(imz;) is the i-th basis function in the j-th direction for 1 <

j < d and the corresponding eigenvalue of ¢} (x1) X -+ X ¢;,(xq) is (i} + - - - + i3).

4.3.1 BEHAVIOR OF THE SOLUTIONS TO MODEL (4.1)

The data are as follows: Q = (0,1), [0,7] =[0,1], k(t) =1, K = K :=0.001, f =0,

ug(r) = 2*(1 — x)%, and the variable orders «(t) and 3(t) are given by
olt) = a(T) + (a(0) — a(T)) (1 — /T — sin(2w(1 — /T))/(27)),

B(t) = BT) + (B(0) — BTN (1 — /T — sin(2n(1 — t/T))/(2r)).
We present first-order time difference quotients 0,U,,(1/2) of the numerical solutions
to problem (4.1) in Figure 4.1 with (5(0), 5(1)) = (0.8,0.2), N = 1600 and M = 200

and d = 1 in (4.15) for the three cases:
(i) a(0) =0, a(1) =0.9; (ii) @(0) = 0.5, (1) =0.9; (iii) a(0) = 0.8, a(1) =0.9.

We observe that the solution for case (i) is smooth near the initial time ¢ = 0 but
those for cases (ii) and (iii) exhibit initial weak singularities near the initial time t = 0
and the singularities get stronger as «(0) increases. These observations numerically

justify the analysis.in.Theorem 4.4.
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Figure 4.1 First-order time different quotients 0,U,,(1/2,t) of the solutions to prob-
lem (4.1) for cases (i)-(iii) [114, FIG. 5.1].

4.3.2 CONVERGENCE OF SCHEME (4.8)

We numerically investigate the temporal convergence behavior of the spectral-Galerkin

scheme (4.8) to problem (4.1).

Example 1 We simulate the example in §4.3.1 with (a) «(0) = 0.8, a(1) = 0.9,

B(0) = 0.8, 3(1) = 0.2 and (b) a(0) = 0.1, a(1) = 0.9, B(0) = 0.2, and (1) = 0.5.

As closed-form solutions to model (4.1) are not available, we use a numerical solution

U with M = 200 and N = 1600 as the reference solution to test the temporal

convergence of the scheme by ||U — U| ieorr2) < QT We present the numerical

results in Table 4.1, which show the first-order convergence in time of scheme (4.8)

as proved in Theorem 4.7.

Table 4.1 Temporal convergence of scheme (4.8) in Example 1 with M = 200 [114,

Table 5.1].
T (a) K (b) K
1/30 1.80E-08 2.28E-07
1/40 1.31E-08 1.11 1.70E-07 1.02
1/50 1.02E-08 1.11 1.35E-07 1.03
1/60 8.34E-09 1.11 1.12E-07 1.03
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Example 2 The dataare Q = (0,1)3,[0,7] = [0, 1], k(t) = 1, K = diag(0.001, 0.001, 0.001),
f=0,

'U/()(xl, Xg, 1'3) = 6_[(Il_1/2)2+(7"2_1/2)2"‘(553—1/2)2]/0,017

and the variable orders «(t) and ((t) are given by

a(t) = a(T) + (a(0) — (D)) (1 = t/T), B(t) = B(T) + (8(0) — B(T))(1 - t/T).

We investigate convergence rates for (c¢) a(0) = 0.3, a(1) = 0.6, 5(0) = 0.1, (1) = 0.1
and (d) «(0) = 0.9, a(1) = 0.3, 8(0) = 0.02, and F(1) = 0.12. We use a numerical
solution with M = 30 and N = 1200 as the reference solution to test the temporal
convergence of the scheme and present the numerical results in Table 4.2, which again

show the first-order convergence in time of scheme (4.8) as proved in Theorem 4.7.

Table 4.2 Temporal convergence of scheme (4.8) in Example 2 with M = 30 [114,
Table 5.2].

T (c) K (d) K
1/50 2.40E-07 6.87E-08
1/60 2.00E-07 1.02 5.67E-08 1.06
1/70 1.70E-07 1.03 4.81E-08 1.06
1/80 1.48E-07 1.04 4.17E-08 1.07
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CHAPTER 5
TIME-FRACTIONAL PDES WITH SPACE-TIME

DEPENDENT VARIABLE ORDER

In this chapter, we follow [124] to investigate a more general time-fractional diffusion

equation with a hidden-memory space-time dependent variable order

Az, t) + ko7 " u(x, t) — Au(wm, t) = f(z,t), (x,t) € Qx (0,7, -
5.1
wx,t) =0, (z,t)€dx(0,T], ulx,0)=uz), =,

where the hidden-memory space-time dependent variable order fractional derivative

operator 9@ of order 0 < y(x,t) < * < 1is defined by [60, 41, 86, 105, 126]

_ _ t (x,s)ds
oyt . [@hg @ ::/ g\, .
t g 0d¢ td, ot g 0 F(l _ 'y(a:, S))(t _ 3)7(178)

(5.2)
It is clear that the operators in (5.2) generalizes the definitions (2.6) of the hidden-
memory variable-order operators by imposing the space-dependence in the variable
order. Therefore, the variable separation method used in previous chapters does not
apply. Consequently, we alternatively employ the Laplace transform method and

resolvent estimates to circumvent this issue and provide rigorous mathematical and

numerical analysis to this problem.

5.1 SOLUTION REPRESENTATION AND RESOLVENT ESTIMATES
For 0 € (w/2,7) and § > 0, let I'y be the contour in the complex plane defined by
[y := {z € C: |arg(2)| =0,|z| > 5} U {z € C: |arg(z)| <6, |z| = (5}.
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The following inequalities hold for 1 <p < o0, 0< u <1andt € (0,7] [38, 61, 62]

<Qt" (5.3)

Lp

/ 2+ Vet 2| < Qt*, H/ (= A) Ve dz
Ty Ty

where |dz| denotes the arc length element on the contour I'y and Q = Q(6, i, p).
For any g € L;,.(0,T), the Laplace transform L of its extension ¢(¢) with compact

support on (0,7") and the corresponding inverse transform £~ are denoted by
o0 1
Lq(z) :z/ q(t)e *dt, L7(Lq(2)) = —/ e”Lq(z)dz = q(t). (5.4)
0 211 Jr,
Lq is always interpreted as the Laplace transform of ¢. It is known that [75]
L(§orat)) =="L(qt)), 0<y<l. (5.5)
The solutions u(x, t) to the heat equation

Owu(x,t) — Au(z,t) = f(x,t), (x,t) € Qx(0,T],
u(x,t) =0, (x,t) €d2x(0,7], u(x,0)=0, €
can be expressed as
ulw.0) = [ "Bt — 5) f(a, 8)ds, (5.7)
where E(t) = e'®, with t > 0, is the semigroup of operators generated by the Dirichlet

Laplacian. Namely, F(t)1 represents the solution to the problem

E(t)y = AE(t)y,
Et)w =0, x€0Q, E0)Y=1, el
which is given by

BEt)(z) = —— [ ete -0 @) ds, e Q) (5.8)

211 JTy

Moreover, E(t) = e'2 has the spectral decomposition in terms of {¢;}3, in (2.1)

Ze (¥, 1) ¢i().
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The following estimates hold for any ¢ > 0 and 1 < p < oo [91]
IE@ | r—rr + HIE (Ol oL + HAE@®) 10 < Q,

IE@ Y g < Q20 g, Y eH, s>r> -1

We shall also use the well-posedness result of the heat equation (5.6) [5].

Lemma 5.1. If f € L?(0,T; L?) for 1 < p < oo, problem (5.6) has a unique solution
we Whe(0,T; L) N LP(0, T; H?) given by (5.7), which satisfies
lullwrrgrz) + ull ooy < QUfIIr0pr2), 0<t<T

where Q) is independent of f, t and T'.

5.2  WELL-POSEDNESS AND SOLUTION REGULARITY

We prove well-posedness of problem (5.1) in the following Theorem.

Theorem 5.2. [124] If Aug € L? and f € LP(L?) for 1 < p < oo, problem (5.1) has

a unique solution w € WY(L2) N LP(H?) such that for some Q = Q(v*,T,p)

lellwroqez) + ull oy < QIF Nuoiz) + [ Auoll2).

Proof. We may assume ug = 0 by replacing v and f in problem (5.1) with u — ug
and f + Awug, respectively. Let X\ be the space X := {g € Whr(L?) : g(x,0) = 0}

equipped with the equivalent norm ||g|| x, := He_’\t&ggH for some A\ > 1 [40]. We

Lr(L2)
define a map M : X, — X): for any v € &), let w = Mw be the solution of

dw(z,t) — Aw(z, t) = f(z,t) — k] " v(z,t), (z,t) € Qx (0,T];

(5.9)
w(x,t) =0, (x,t)e€dx(0,T]; w(x,0) =0, = €.
We apply the following relations
T o)
/ e M dt < /\7*_1/ e s ds = \TTIT(1 — %),
‘ 0 (5.10)

(@) (p—5) Tt — s)v*—v(w) < max{1, T}t —s)"7"
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and Young’s convolution inequality to obtain

—\t 'y(z,t) A\t (9 U xTr S)
e P H / T = (@, 5))( — sy

Lp(L2)
—)\(t s)
ﬁ _)‘sasv(:v, S)dS
- ) LP(L2) (5.11)
)\(t s)
—_— v(x, s ds
(t —s)7 (@,5) L2(Q) Lo(0.7)
— At —v* -t v =1|| ,—At
< QH@ t L1(0,T)He O Lr(L2) < QA He O LP(12)

Therefore, k 97"y € L? (0,7;L?). By Lemma 5.1 problem (5.9) has a unique solu-
tion w € X\ and the mapping M : X, — X&), is well defined.

Let wy = Muwvy and wy = Muy for vy, vy € X\, then w = w; — wy € X, satisfies
(e, t) — Aw(wm, t) = —kd] ™ v(m, 1), vi=v — v,
equipped with the zero initial and boundary conditions. Then (5.7) becomes

t
w(a,t) = — / E(t - 5) (k07 v, 5))ds. (5.12)
0
We differentiate (5.12) with respect to ¢ and multiply the equation by e=* to get
eMow(m,t) = —ke M) y(w, 1)
. (5.13)
— e_’\t/ O E(t — s) <k DY@y (a, 8))d8.
0

We use (5.11) to bound the first term on the right-hand side, and use (5.8) and

Laplace transform to evaluate the second term to get that for 0 < e < 1

L [ /Ot O E(t —s) (k oV @y, s))ds]
=L —/Ot O (% /1“ etz — A)ldz> (k: oY@y (z, s))ds]
=L -/Ot (L / =)z (z — A)_ldz> (k Y@y (a, s))ds] (5.14)

2w Jr

=L % /Fg e”z(z — A)_ldz] E(k ey (w, t))
: v(w,t)) = <z1_€(z — A)_l) (ZEE(kaz(m’t)v(cc,t))).
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We take the inverse Laplace transform of (5.14) and use (5.4)-(5.5) to get
t
/ O E(t —s) <k Y@y (z, s))ds
0
-1 [(zl_s(z = ) (LR va, t)))]
_ [(zl—f(z — 2) )£ (k705 07 o e, t))]

|
[

(5.15)
= L7 (2 (2 — A)_l)} * (k: Roe 8?(‘”’01)(3:,15))

_ A 1 1 Rge (@)
_l—,/rez (z—A)"e dz]*(k: 0; 0 v(m,t))

e[ 1 )
_ - —(y — A)! z(t—s)d k_Raa a'y(x,s) ds.
/Ol '/ng (z ) e z( = 0] v(a:,s))s
We use (5.3) to bound the integral in the square bracket by

1
_/ zl—s(Z_A)—lez(t—s)dZ

271 Ty

Q
==

L2(Q)

To bound the second integrand, we directly evaluate

ol} 0] "o (w, 1)
. 1 80'1}( 9)
_F(l—e/o t—y r1— 0)) (y — O) a0y
801) ¢ 1
1—5 / I /9 (t = )y — open ¥ (5.16)

S 1”(””9(1—7( 0.1
[ =T (1— 7(.0)

1 —e—(x,0)

—/ Npy— 0))89U($,9)d9.

We use (5.16) to bound the following term on the right-hand side of (5.15) by

%) oy, 0)db

05 07 v, )] = |0 ol} T 0 (e, t)\
(5.17)

_/t (t—6)" 57”891) Q t |Opv(z, 0)|
~Jo T —e -, (t—06 €+V
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We combine (5.14)-(5.17) to bound the second term on the right-hand side of (5.13)

e M /Ot OE(t —s) (k’ OV @)y (zz, s))ds

L2
BV * 1950 (-, 0) |2
< At
= Qe /0 (t — 3)1_5 0o (s—0)+r dods

L2 4.

1ot Dl gy [ e et 0)

o Hae
s Qe / (i — 6y

We take the || - ||r(o,r) norm of the preceding inequality and use (5.10) and Young’s

convolution inequality to obtain

e M /Ot OE(t —s) (k: oY @)y (x, s))ds

e (5.18)

(e_’\tt“’*) * He_’\t(‘)tv(-,t) < Q)\V*_lue_Atatv

L2

L?(0,T) Lr(L2)’

We combine estimates (5.11) and (5.18) to bound the right-hand side of (5.13) by

lwllz, < QX" Hlvllay

Choosing a sufficiently large A\ ensures that the mapping M : X\ — &), is a contrac-
tion. By the Banach fixed point theorem, M has a unique fixed point w € X}, that
is, (5.1) with uy = 0, and consequently (5.1), has a unique solution in X.

Let w = Muw be the fixed point. Problem (5.9) becomes
Bw(x, t) — Aw(w,t) = f(x,t) — ko " Dw(w,t), (x,t) € Qx (0,T);
w(x,t) =0, (x,t) € x(0,T]; w(x,0) =0, xec.
We multiply e~ on both sides to rewrite the equation as
A(eMw) — Ale™Mw) = —Ae Mw + e M f — ke MGy
We apply (5.11) and Lemma 5.1 to conclude that for any 0 < ¢t < T

||6_)\tw||W1’p(0,E;L2)

S Q(”fHLP(O’f;L?) + )\||€_Atw||Lp(O’{;L2) + He_)‘taz(mvt)w

LP(O,E;LQ)) (5.19)

< croy + )\||e_’\tw||Lp(O,;;L2) + AW*_lHe_M@tw

Lp(o,f;L2)) ’

52

www.manharaa.com



Choosing A in (5.19) sufficiently large yields

He_)‘t&gw

LP(0.5L2) < Q)‘”e_Atw”Li"(O,E;L2) + Q”f”LP(O,E;L2)a (520)

where @) is independent of \. We bound the first term on the right-hand side by
p t e t
w = / e / Osw(+, s)ds
Lr(0,t;L2) 0 0
t t P
< Q/ (/ He_)‘sasw(-,s) ds) dt

<Q/ / H _)\Saw det Q/ ”e_ASaw“Lp(o,t;L?)dt'

We plug this estimate into (5.20) we find

”e—At

p
dt
L2

L2

H “Mow

" <QV/H@M@Mm@mwh+QWM“mpy0<5§T

Applying Gronwall’s inequality yields

He_)‘tatw

oL S Qe fllrorir2y, 0<t<T. (5.21)
Let u be the solution to problem (5.1). Then w(x,t) := u(x,t) — up(x) satisfies
dw(z,t) — Aw(z,t) = f(z,t) + Aug(x) — ko] " w(z, t),
(z,t) € Q x (0,7]; (5.22)
w(x,t) =0, (x,t) €2 x(0,T]; w(x,0)=0, xecl
We apply estimate (5.21) to problem (5.22) to get

lwllwreoriaz < Qe + | Auoll2)
where () depends on A, which yields
lullwirorzs) < QI Noooias) + 1Auollz2)-

Then we apply this equation, (5.1) and similar estimate as (5.11) to find

lull oy < QU AUl Lozey = Q|0 + KPP — f

Lr(L2)

< Q(llullwroa) + 1f o)) < QUIF o) + | Aullr2).
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To estimate Oy u for the analysis of the numerical approximation to problem (5.1),

we use (5.7) to express the solution w to problem (5.22) as follows
t t
w(x,t) = / E(t— s)(AuO + f(x, s))ds - / E(t — s)(k07®Yw(x,s))ds. (5.23)
0 0

Then the estimate of dyw could be performed by differentiating (5.23) twice in time
and then applying similar techniques in the proof of Theorem 5.2. We thus present

the result without proof and refer readers to [124] for more details.

Theorem 5.3. Suppose v € W?®(L>), Auy € H5% and fe Wl’l(ﬁg“%) for

0 < e < 1. The reqularity estimate holds
||U/||W271(L°°) S Q(HAU’O”H%+E + ||f||W1,1(}VI%+E)>

with Q = Q(g,’}/*, ||’7||W2*°°(L°°)7 k7T)
If further v € C2([0,T); L), Aug € H21-0)+5+ f(z 0) € H20-0)+5+¢ gpg
£ e (0,71 7% for 0 < & < 1, then u € C2((0,7]; L) and the pointwise-in-

time estimate holds for t € (0,T]
100, Oll ey < QE (180 paangrsge + 17O paamgyrg e

H lrgozpigen): 70 = (@ Ol

with Q = Q(e, 7", |v|lw2ee(reey, k, T). Further, if y(x,0) = 0, the estimate is improved

to the following global reqularity estimate
lellczqoryze) < QAU argys -
+||f(.7 0)||H2(1—”{0)+%+E + ||f||cl([O,T];f{%+E))'
5.3 DISCRETIZATION AND NUMERICAL EXPERIMENTS

We follow [124] to present and analyze a discrete-in-time scheme to model (5.1).

Define a uniform partition on [0,7] by ¢, := n7 for 7 := T/N and 0 < n < N. Let
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U, = u(x,t,), we discretize dyu and 83(”)1; att=t, for 1 <n < N by

n — Unp— 1 tn
D, 1) = Oyt + Ry 1= "0 2 [ D, t)(t — ty_y)dt,

T T Jtn—1

'y(w,tn) tk 3 U(il? s)ds
o Z/t T = (@, 5))(ty — 5)7@

57—U,kd8
- Z l tp—1 F(l - (.’B,tk))(tn — S)'V(wvtk)
173 8su(w, S)ds ty asu(w’ S)ds
thy D(1— (2, 8))(t, — s)7 @) Jy s T(1 — (@, t)) (£, — s)7(@tk)
bk (85u(cc, S) - 57'Uk)d3
tooy D(1 — (@, tg)) (t, — s)7(®@0)

(5.24)

+

] = 7@y, + F, + Gy,
Here 62@t)y,, F, and G,, are defined by

5z(wzt")un = Z Cnyk(/u/k - uk—l)?
k=

=@ i)™~ @ (@ b)) ’

n th
-3 | [P 8 u(z, s) B dsu(x, s) ]ds,

k?:1 tk (t - 8) (:L‘ S) P(l - ’Y(w, tk))(tn —_ S)'Y(wvtk)
- - b as'LL(CU, S) B 67'uk

G = 5
k=1 * o T(1 = y(, tr)) (t, — s)7(@t)

) 1 " Gugulw, 6)d0a2|a
= Z/tk L T — (2, tr)) (E, — 8)7(®te) /tk1 i bou(x,0)dodz|ds.

We plug (5.24) into (5.1) to derive a reference equation for problem (5.1)

n
1
1 rte (tn — 5) y(z,tr) (tn _ tk_l)l—'y(a:,tk) _ (tn B tk)l_'Y(w’tk)
k= F/tk T

G, :

Ot + k87w, — Auy = f(a,t,) — (k(Fo+Go) + Ry), 1<n <N

We drop the last term on the right-hand side to obtain an L-1 time-discrete scheme
for problem (5.1): find U,, = U, (x) for n = 1,2,..., N, with Uy := ug, such that

6. U, + k7@, — AU, = f(z,t,). (5.25)

The truncation errors can be analyzed by similar techniques in Section 3.3.1 and the
optimal-order error estimate of the semi-discrete in time scheme (5.25) can be carried
out in parallel with the proof of Theorem 4.7. We thus present the results without

ations can be found in [124].
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Lemma 5.4. If v € W2(L®), Aug € H2 and f € WYL (HEYE) for some 0 <

e < 1, then the following estimate holds

N
IR 21 zoey + IF sz + 1G 2110y < QQoTs 1Rl a0y =T 3 1 Rullz.

n=1

Here Q = Q(e, 7" I I lwace p), T) and Qo = | Auoll g + 1y e

Theorem 5.5. If v € W2®(L®), Aug € He and f € WYL(HE™) for some

0 < e < 1, the optimal-order error estimate holds for scheme (5.25)

U = 0l e gy o= 05, U = tall e < Qr (1A

e 1 grton):
Here Q = Q(e,k, 1™, [llwaceo), T):

We then carry out numerical experiments to investigate the temporal convergence
of the approximation (5.25) to problem (5.1). In numerical experiments we assume a
rectangular domain Q = (0, 1)¢, and apply the second order center difference scheme
for —A under a uniform spatial partition with mesh size h. We take h small such
that the errors of the spatial discretization can be neglected. We measure the error

|U — | joo () and fit the temporal convergence rate x.

Example 1 Let Q = (0,1), [0,7] = [0,1], k =5, f = 0, ug(x) = sin(wx), and the

variable order «y(z,t) = ((x)n(t) where

C(x) =1+ 1105111 (?) n(t) = v+ (o = t1) [1 - ; - Qlwsm <2W<1 - ;»]

and
(i) to =0, v =0.3; (ii) 1o = 0.4, 17 =0.3; (iii) tc = 0.8, ¢ty = 0.3. (5.26)

As a closed-form analytical solution is not available, we use a numerical solution
computed with 7 = 27 and h = 275 as the reference solution to test the temporal
convergence of the scheme. We present the numerical results in Table 5.1, which show

the first-order temporal.convergence rate of the scheme as proved in Theorem 5.5.
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Table 5.1 Convergence rate of scheme (5.25) in Example 1 with ~ given in (5.26)
[124, Table 1].

T (i) K (ii) K (iii) K
1/32  3.34E-04 1.79E-03 5.28E-03
1/48 2.27E-04 0.95 1.17E-03 1.05 3.45E-03 1.05
1/64 1.71E-04 0.98 8.63E-04 1.05 2.55E-03 1.05
1/80 8.44E-05 1.02 4.13E-04 1.06 1.22E-03 1.07

Example 2. We use scheme (5.25) to simulate the hidden-memory variable-order
tFDE (5.1) in three space dimensions. The data are given as follows: Q = (0,1)3,
[0,7] = [0,1], s(x) =5, f =0, ug(xy, 2, x3) = sin(mwx;) sin(rz,) sin(nzs), and the

variable order v(x,t) = ((x)n(t) is given by

C(x1, 70, 73) = < _ %%) (1 . sin(;(r):vz))exp(%)

t 3 2 3

(W) n(t) = ¢ + -5 () n(t) = -+ (527)

We use the numerical solution computed with 7 =27 and h = 1/24 as the refer-
ence solution to test the temporal convergence rate of scheme (5.25). We present the
numerical results in Table 5.2, which again show the first-order temporal convergence

rate of the scheme (5.25) as proved in Theorem 5.5.

Table 5.2 Convergence of scheme (5.25) in Example 2 with v given in (5.27) [124,
Table 2].

T (iv) K (v) K
1/32 8.19E-05 1.08E-03
1/48 5.72E-05 0.89 6.78E-04 1.14
1/64 4.30E-05 0.99 4.85E-04 1.16
1/80 3.39E-05 1.07 3.72E-04 1.20
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CHAPTER 6

VARIABLE-ORDER SPACE-FRACTIONAL PDES

SFDEs are widely used to model the anomalous diffusion in heterogeneous media
and thus are extensively investigated [1, 2, 21, 67, 68, 83, 95, 108, 109, 110]. In
this chapter, we study the following variable-order sFDE, which serves as a variable-
order extension of the steady-state counterpart of the mixed diffusion model (cf. [14,
Equation 29]) that consists of both a second-order spatial derivative term modeling
the Fickian diffusive transport and a space-fractional derivative term modeling the

superdiffusive transport
—0ppu(z) — ko0 @u(z) = f(x), € (0,1); u(0)=u(l)=0 (6.1)

where 1 < a(x) < 2 and k > 0 is the fractional diffusivity and the variable order
a(x) satisfies the following assumptions:
Assumption Ca € C'0,T]and 1 < a(t) < o* < 2o0n [0, T] for some 1 < o* < 2.
In this chapter we follow [113] to carry out mathematical and numerical analysis

to model (6.1).

6.1 WELL-POSEDNESS AND SOLUTION REGULARITY

By the definition (2.5) of ¢02(*), we decompose the equation (6.1) into the following

system via the substitution v(z) := O,u(x)
v(z) + ko I2 @y (z) = —f(z), (6.2)
u(x)=vkxr —x- (v*2|=1), (6.3)
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where * represents the convolution on [0, z]. Therefore, the main task is to analyze
the first integral equation in (6.1). Since the well-posedness of this integral and the
estimate of 9,v = 93u can be analyzed by similar (and simpler) techniques as those in
Chapter 3, we cite results from [113] and omit their proofs, and focus on the estimate

of O,,v = tu, which has stronger singularities not encountered in previous chapters.
Theorem 6.1. Under Assumption C, (6.2) has a unique solution v € C[0,1] and

6.4
lolloon < Qllfleoa,  Q = Q(a*, k). (6.4)

That is, (6.1) has a unique solution u € C?[0,1] such that

lullezio, < QI fllcp,y, Q= Qa™, k).

Theorem 6.2. Suppose f € C*0,1] and the Assumption C holds. Then the solution

u to (6.1) belongs to C3(0,1] and the following estimate holds
03u| < Qul| flloroyz' ™, 0<az <1, (6.5)
where Q, = Q. (o, k, ||o||c1p,1))- If 2(0) =1 then u € C?[0,1] and
10z ullcroy < Qllfllero- (6.6)

Theorem 6.3. [113] Suppose f,a € C?[0,1] and Assumption C holds. If a(0) > 1,
then u € C%[0,1] N C*(0,1] and

|8§U‘ S Q**||f‘|c2[071]$_a(0), 0<zx S 1 (67)
where Qu = Qus (a*, |l 20,15, k;) If «(0) =1 and o/(0) = 0, then u € C*0,1] and

|03ull o) < Qusll fllc2p0,1)-
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Proof. We first consider the case of «(0) > 1. We apply integration by parts for

0[27@y(x) and then differentiate (6.2) twice to obtain

o) = (s —agy) (20 + [ - o)

(s =) [0+ [ - o> ”)‘“)/

(a (z)x* @ Ing — m)v(O)

po(z)—1

e k—%(x‘)) KO"(%)“’”QW) e = 22 )

olz 2 —o(x !
_/ ( 2 (z) (:L') ln(x — S) — T&)ds] _ f”(l‘).
We observe that the tenth and the twelfth term on the right-hand side have the

strongest singularity. Hence, we focus on the estimates of these two terms and omit

the estimates of the rest. We recall a(0) > 1 and apply (6.4) and the fact that

1—ax)

(xl_o‘(z))/ = —2'*@a/(z) Inx + e
T

to bound the tenth term on the right-hand side for = € (e, 1] by

k (2—a($)>’v(o)' QO QifO]  _ QIFO)] _ QIfO)]

‘F(3 _ Oé(.CC)) xa(m)—l xa(z) xa(O)xa(z) a(O) xa(O) — 504(0)

We decompose the twelfth term on the right-hand side of (6.8) for z € (g, 1] as

ko (x) v '(s)ds k e (s)ds \/
'3 —a(z)) /o (z — s)*@-1 " T(2—a(x)) </0 (x — s)o‘(z)—1>
_ ko (x) /m v'(s)ds k e/2 W'(s)ds
FB—a(@)Jo (z—s)@1 T2-—a)\Jo (z—s)@-!

< V(s)ds rW(s)ds &
+/a/2 (x — s)al@)—1 + ) =: ZJZ.

We use (6.5) to bound J; by

| 1] <Q||f||0101]/ 1=a0) (g — g)t=2l@) s

= Qllflleo. B2 — a(0), 2 — a(e))a*O =) < Q| fllex '~
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Note that the kernel in J; has no singularity since z € [g,1] and s € [0,¢/2]. We

bound v'(s) in the integral by (6.5) and use the fact
@ — e/l 0| < (@ - ej2)Ieleren=e < g

to bound .J; by

ds

1l = g [Pt [T Z) | L al)

'F(Z — Oé(iL‘)) (x - s)a(w)—l + ($ _ S)a(x)

B 'r k:—(xoz)(x)) /0 v'(s) [_a,(x)(x - Zli(i);(xi) H_ a(x)]ds

< Qlflovou(x — /27 [* s

— ale/2 o’ (€)d.
< QI fllerp e (x —e/2)™" 12)= ) o (€

< Qlflerpe® O (@ — 22 < Q| e O/,
The kernels in J; and J; may be singular, hence one cannot interchange the order

of differentiation and integration directly. For s < « with = € (g, 1], we have

()
‘a’(a:)(x — 5)27al@) (1 —(2—a(x))In(z — s))

(6.9)

+ (z — s)7o@

@-at?
Q B Q(m _ S)a*fa x Q
B D R s T B PR T

We integrate Jy; by parts, differentiate the resulting terms and use (6.9) to get

x z — ¢)¥@) (z — 5)?@
il = r(2|k—(02(|x)) '<( 2—24 Juers v 5)< @) ) ds
< Qlf st — 0 1@ [ %d
[v"(s)

_ S)a

< Qlfllerons O -0+ Q [

————ds, € (1]

We similarly bound J; for any x € (g, 1] by
B |k(z)| o (z) In(z — s) 1—a(z) ‘
1l = L2 —a(x))l e v(s) (x — s)l@)—1 + (x — s)a=) ds
QU e

£

1—a(0) c _ o —alz) )
< Qlfllosoae ™ [ (0= 8)= s < S PEB
Qllflcrpuy
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We incorporate the preceding estimates into (6.8) to conclude that for = € (e, 1]

dS —a —a —o
V()] < Q/ |a "+ Qlfllczon (5 0) 4 gm0 (5 — ¢! (€)>. (6.10)
We apply Lemma 2.1 to (6.10) and use the fact that

e R G R

—a(0 .- (QF(2 - a*))n n(2—a*
=< ()Zf(n(Z a*)+1)(x_€) e

1- aO 1 ale [2—a"))" n(2—a*
el 'S e e

n=1

n=1

e OF, 1 (QT(2 —a*)(z — &)™)
el (x — E)l_a(E)Eg_a*’Q_a(s)(QP(2 —a")(x — 5)2_0‘*).

to conclude from (6.10) that for z € (e, 1]

(2
W'l < Ql fllezpa [5_0‘(0) +el72O (g — g)lmol) 4 Z (QL( *))
[(n(2 = a%))
y / (@ — s)n(2—a*)—1(€—a(0) 4 elmeO (s _ 5)1 o e)>d8] (6.11)

< Q[ fllezp. (6_0‘(0) + !0 (g — 5)1—0(5))_

Restricting « € [2e,1] in (6.11) yields an estimate ||[v||c2pe1) < Q| f|lc2pne .

Since 0 < € < 1 is arbitrarily small, we replace € by £/2 in the estimate to get

]2, < Q||f||c2[o,1]€_°‘(0)

which leads to (6.7). The proof of (6.6) can be carried out similarly and thus be

omitted. O

6.2 DISCRETIZATION AND ERROR ESTIMATE

We follow [113] to present an indirect collocation method for model (6.1). Let z; :=
(¢/N)" for 0 < ¢ < N and r > 1 be a graded partition of [0, 1] that reduces to a

uniform mesh for » = 1. Using mean-value theorem bounds h; := x; — x;_1 by

ir—(—1) ri" 1 r .
— < < — <i<
N < max —o- < 1<i<N. (6.12)
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Let vn(x) be a piecewise-linear function with respect to the partition such that
vp(z;) = v; fori =0,1,..., N and let I;, be the piecewise-linear interpolation operator
on the partition. For any function v(z) on [0, 1], we define [|v|;_ := maxo<i<n [v(2;)]-

An indirect collocation method for (6.1) states as follows:

Step 1 Find vp(x) such that

Vp = Ih( — ko[ﬁia(m)vh - f) (613)

Step 2 Define an approximation uy(z) of the solution u(x) to (6.1) by
Up = vp kT — T - (U % T|peq). (6.14)

6.2.1 A GENERALIZED DISCRETE GRONWALL’S INEQUALITY

We prove a discrete Gronwall’s inequality used in subsequent error estimates [113].

Lemma 6.4. [113] Suppose the positive sequences {z,}N_, and {y,}_, satisfy
s 1Sn<N 0<f<1 M=M(N)>0. (6.15)

Then the sequence {z,}_; can be bounded from above by
n < Un + Z yi(n — 7)™ 1<n<N. (6.16)
m=1 j=1
This is a generalization of the weakly singular Gronwall’s inequality [7, Theorem
6.1.19], in which {y,}"_, is assumed non-decreasing and M(N) = M,N~* for some

positive constant M,. Under these additional assumptions, (6.16) reduces to the

following estimate for 1 < n < N that was obtained in [7, Theorem 6.1.19]

n—1 B z‘nz
. <yn<1+Z MN r Z” §)if- 1>
i=1

n—1 o (6.17)
<yn(1+z (.5 5F(ﬂ)) 5) < yal(1 + Ega (M.T(8))).
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Proof. Let A = (a;;)},_, be a strictly lower triangular matrix with a;; := M/(i—j)'~?

for 1 < j <i < N and 0 elsewhere. Foranyy := (yi, -+ ,yn)? andz = (21, -+ , z2y5)7

Y

y < z implies Ay < Az, where the inequality means it holds elementwise. (6.15) can

be expressed in a matrix form

z<Az+y. (6.18)

It is clear that the first m entries of A™y vanish for any y € RJZVO and m > 1. We
prove by induction that the n-th entry (A™y), of A™y satisfies

o< (MF mn my] m/B 1
j=1

By definition of A, the equality in (6.19) holds for m = 1. Assume that (6.19)

(A™y), < m+1<n<N. (6.19)

holds for m = m for some 1 < m < N — 2. Then for m = m + 1, we recall that

(A™y); =0 for 1 < i < m to obtain from (6.19) that for m+2<n <N

m _ = ( Y)z = (Amy ‘
R i
— ;B
= Mi:;rl (n — )18 F(?’hﬁ) Jj=1 g (Z j) 1
(ME@B)™ "I A B-1(j _ jymb-1
- M - B
I'(mp) j=1 ” 'L:j-l-"ﬁ(n v

T T((m+ 1)5) o
By induction (6.19) holds for 1 < m < N —1. In the second “<" we used the estimate
[19, Lemma 6.1] that for 0 < k(=1— ) <land y(=1—-mp) <1

i—1

Y (=B k=) < B=k 1=a)(i =)

We apply (6.18) recursively for n — 1 times and recall A is nonnegative to obtain

1 1
2<Az+y <A(Az+y)+y=A%+ > A"y <A’(Az+y)+ Y A"y
m=0 m=0
n—1
< . <A"zZ+ Y AMy.
m=0
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As (A"z),, = 0, we compare the nth entry of the preceding inequality and substitute

the estimate (2.1) for A™y to obtain

n—1 n=1 (M m n—m
Zn S Yn + Zl(AmY)n S Yn + Zl % Z:l yj(n j)mﬂ_l 1<n<N
m= m= =

We thus finish the proof. O

6.2.2 ESTIMATE OF THE TRUNCATION ERROR

In this section, we estimate the truncation error R, defined by

. —k e v(s) —Lno(s)
B = 0l b oo = i (6:20)

Theorem 6.5. [113] Suppose f,a € C?[0,1] and Assumption C holds.

Case 1 «(0) =1 and &'(0) =0. Then forr =1

1Rl < Qllfllc2ioy N> (6.21)

Case 2 «(0) > 1. Then
1R,| < Qllfllcepn' ™ N~U220 0<n< N, r=1, (6.22)
IRl 100 < QUfllc2pyN72 7> 2/(2 = a(0)). (6.23)

Here Q = Q(o, ||a|c2j0,1, k).

Proof. Let GEI)(y;x) = (x; —x)/h; for y € [x;_1,2] or —(x — x;_1)/h; for y € [z, ;]
and G’E2)(y;x) = —(2; — 2)(y — xi—1)/hs for y € [z, 2] or —(z — zi1)(zi — y)/ D

for y € [x,z;]. The error expansions for a linear interpolation hold

d™v(y)
dmy

v(x) — Io(x)

:/i G (y; z) dy, 1<i<N, m=12  (6.24)
[wi_l,xi] Ti—1

For Case 1, v € C?[0, 1] by Theorem 6.3. We use (6.24) with m = 2 to get

Tn

N2 [T (= )7 ds < Q| fa N
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For Case 2, we use (6.24) with m = 1, (6.5) and 227" — (2, — 21)>™* < 277

with hy = 21 = N7" to bound the integral on the first interval [0, z4] in (6.20) by

21 v(s) — Ipv(s) w3 V' (y)ldy
/O ds' </O _ds

(, — 5)lan)—1 (1, — s)lan)—1

x1 1 a(O)d . o )
< Qe [ AL s = QY flloht = [ o)
0 (xn— s) 0

< QI fllerhi (22" = (@ — 21)*") < Q|Ifer N0,

In a similar fashion we use (6.24) with m = 2 and (6.7) to bound the remaining

element integrals on [x;_, z;] for 2 <7 <n in (6.20) as we did in (6.34)

[y, L,

i (xn _ S)a(xn)—l (xn _ S)a*_l

z [Ty~ e0q T R
< Q|| fllezhi {”any—)?fd < Q||f]|cz h2a >/ (zn — 5)1"%"ds  (6.25)
Fi-1 \Pn Ti—1

T (A S )

We use (6.12) to bound the integral on the last interval [x,_1,x,] in (6.25) by

/xn v(s) — To(s)

ds| < pi=—ar —a(0)
w1 (T, — s)ol@n)—1 s| < Qlfllezhy, 2,5

(4 a*)(r—1) (n 1)—a(0)r nr(4—a(0)—a*)—(4—a*)
— Q”f||02 N @—a*)r N —a(0)r < Q||f||02 Nr(d—a(0)—a*)

We use (6.12) and the facts that z; > 27"z, for [n/2] < ¢ < n and that h;

is increasing with respect to i to bound the integral on the interval [z, /o7, Zn—1] in

(6.25) by
T— _I
Lo Sy
a2y (Tn — 8)Fn
n—1
<Qlfle > ha” (@ —2ia)™ = (20— 2:))
i=[n/2]+1

< Qflleza, Vb3 (w0 — page))* " < Q fllezay O~k
(2 a(0)—a*) n2(r—1) r(4—a(0)—a*)—2
< Q||f||02 Nre—a(0)—ar)  N2r = Q||f||6'2 Nrd—a(0)—a*)
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We use (6.12), the mean value theorem and the fact that (x, —2;)'7® < QzL~" for

1 <i < [n/2] to bound the integral on the interval [x1, 2, 2] in (6.25) by

ey v(s) — Iho(s) /2] 2 —a(0) o
L | < Qe 3w e =)y
1 n i=2
[n/2] r(1—a*) [n/2] (2 1\y=ra(0) ;3(r—1)
1—a* —a(0),3 _ Qllfllc2n (1—1) i
S Q”f”Can Z; x’i*l hl S N,,.(l_a*) ~ N_,,.a(o) N3,,.
—a*) [n/2
= Q“f”cmr(l a : [%1 j7(2—a(0))+r-3
Nr(4—a(0)—a ) =
Qflleen'=
T N2 0 T
< r(1—a*) [n/2] r(2—a™*)
Qo= R QU ) _ Qlfller 2
Nrl—a)-a") & = Nr@-eIN2 = N2 T2 a(0)
We collect the preceding estimates to complete the proof. O

6.2.3 ERROR ESTIMATES OF v — v,

Theorem 6.6. [113] Suppose f,a € C?[0,1], Assumption C holds and h small

enough.

Case 1 «(0) = 1, &/(0) = 0. Then an optimal error estimate holds for scheme

(6.13) on a uniform mesh
lv = vnllzee < QN[ fllc2io- (6.26)

Case 2 «(0) > 1. Then a suboptimal pointwise error estimate holds for scheme

(6.13) on a uniform mesh
0(2) —on(2)] € Ql oz N0 0<n< N (6.2)
In addition, an optimal error estimate holds for scheme (6.13) on a graded mesh

o= vz < QUfleaon N2 7 > 2/(2— a(0). (6.28)
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Proof. We let e := v — vy, and subtract (6.13) from (6.2) to obtain an error equation

B —k n Ine(s)
e(z,) = T2 () /0 = S)a(xn)_lds + R,

Here the local truncation error 7, is given by (6.20). We use e(xy) = 0 to bound

e(x,) from the error equation as follows

Ine(s)|ds
e |<QZ/ lh—la*lﬂRﬂ
zi—1 \Tn
<QZ x”|+umu/’———?j@+md
Tj—1 ('Tn - 8)
(6.29)
< QZ (le(xi)| + le(@)]) ((n = 21)*"* = (0 =27 ) + | Ral
n—1
= Qle(@a) P2 + 3 le(@)|((wn = 1) = (2n = 2:41)*") + [ Ra-
i=1
We use the following elementary estimates for 1 <i <n — 2
(T — 1) = (@0 —2i1)" " < (2= ) (@41 — Tim1) (0 — T331) 7,
_s\at -1 a*—1
(n ' Z) . — <1+ 1 ) S 204*—1’
(n—(i+1))—1 n—(i+1)
—oa=(5) - (5 2 (F) (55
Tp — Tiy1 = N N )
1+ 1\" 1—1
x”l_xi1:<N>_<N> ( )
and recall 1 < o* < 2 to bound the factors (z,, — 7;_1)>™® — (¥, — 241)>"% by
(zn — xi71)2_a* — (zn — $i+1)2_a*
i+ INTTL2 1 i+ I\ = (P4 1)\
<(2—af il R
< O‘)T<N> NHN) < N )]
L1 1\DEme) 1
=9(2 — *\,.2—a (Z )
2=a’)r N N2 (n — (i + 1)) 1
Q Q

< < .
- N2-a* (n _ (Z + 1))a*—1 - N2—of (n _ Z’)a*—l
We choose Qh*™*" < 1/2 to cancel |e(z,)| on both sides of (6.29) to obtain

n—1
le(x,)| < MyN ; (n— i) -1

For Case 1, r = 1. We incorporate the upper bound (6.21) for r,, into (6.30) and

4+ My|R,|, 1<n<AN. (6.30)

apply the generalized Gronwall’s inequality (6.17) with § = 2 — a* to prove (6.26)
(14 Bya- 1 (MiD(2 = @))) < Q| fllozpo N2
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For Case 2 with a graded mesh of r > 2/(2 — «(0)), we similarly prove estimate
(6.28) by incorporating the upper bound (6.23) for r,, into (6.30) and apply Gronwall’s
inequality (6.17) with 8 = 2—«*. To prove estimate (6.27), we incorporate the upper

bound (6.22) for r, into (6.30) and apply Lemma 6.4 with 8 = 2 — a* to obtain

nl(MlN (2— a*)F(Q—Oé i n—i o
le(x,)] < Ma|r,| + My NGO |r]| n — §)i-en-1

=1

< QM| flea | 0!~ N~ (7200

*

n—1 (MlN-f(2foz*)F(2 _ a*))z n—i jlfa ) .
_ \i(2—a*)—-1
5 O =

=1

< QM| fllez 0!~ NZH2)

1 S (MIN-CIr(@2 — o)) e (oar
—a )2« )—1d
TN 2T Tae—aY) [ m-a) ’

=1

— QM2||f||C’2 nl—a*N—(4—2a*)

1 = (MN-CID(2 — a¥)) . .
NG (i+1)(2—a*)—1
M= Z.Zzl i DE—ay) Le-am
QM, E(MIN=CIT(2 — )"
= 2 42—
Nt |00 2 TG e — )

S

< QI fllean = N2 (14 T(2 = 0") By g0 (MIT(2 — @)

< Q||f||02n1_a*N_(4_2a*)-
We finish the proof of the theorem. O

6.2.4 ERROR ESTIMATES OF u — up

Theorem 6.7. [113] Suppose f,a € C?[0,1], Assumption C holds and h small

enough.

Case 1 «(0) =1 and &/(0) = 0. Then an optimal error estimate holds for scheme

(6.14) on a uniform mesh

lu = wnllz. < QI fllezio N~ (6.31)
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Case 2 «(0) > 1. Then suboptimal and optimal error estimates hold on a uniform

mesh and a graded mesh, respectively

lu = unllre < QUfllczp N~ r =1,

[ —upl|r < QUfllc2p N7, r>2/(2=a(0)).

Here Q = Q(a*, ||04||CZ[0,1]7 k).

Proof. We subtract (6.3) from (6.14) to obtain

1

| @) = vnls) @ = 9)ds =z [ (v(s) = va(s)(1 — 5)ds

<2 [ Jo(s) ~ Lio(s)lds + 2 [ [afos) = )l ds (632

u(z) —un(2)| =

v(x;) — vp(z;)

1 N
<2 [ Jols) — L(s)lds + @3 hy
0 i=1

In Case 1, v € C?[0,1]. We incorporate (6.21) and (6.24) with m = 2 into (6.32)
to obtain (6.31). For Case 2, we estimate the first term on the right-hand side of
(6.32) elementwise. We use estimate (6.5) and expansion (6.24) with m = 1 to get

the following estimate
z1 T T
[ ) ~tws)las < [T 1/ )ldyds
0 o Jo
1
Sthnf“Cl[o,u/O yt =0 gy (6.33)

< Q||f||01[o,1]h?_a(0)«

We use estimate (6.7) and expansion (6.24) with m = 2 to bound the integral on

[xi—la xz] by

[ ) = tws)lds < b [ [T 0 (y)ldyds
Ti1 wi1 Jaia
SQ”f“Cz[OJ]h?/ Ly o0y (6.34)
Ti—1

< Q|| fllc2on Wi .
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We combine (6.33) and (6.34) with (6.12) to bound the first term on the right-hand
side of (6.32) by

1 N
| 1e(s) = Lw(s)lds < QU ez (N—“?’—aw” + zh?x;_ﬁ@)

=2

N
< Q[ flle <N —r=al) L 3B NI ) 7re©) N?‘a(O))

=2

N
< Q|| f |oa N 730D (1 " Zir(Z—a(O))-H“—S) (6.35)

=2

N
Qlf 2N~ 3730 < Q| flleaN=C=), =1,
< i=1

N
2
Q| fllc2 NGO N =1 < Q| f[|c2 N2, 7 >
=1

2 —«a(0)’
where we have used the facts that Zf\;l i~ < 00 and Zf\il it < N

For r = 1 we use (6.27), (6.32) and (6.35) to bound ||u — up||r~ by

N
v —unlle < QI fllc2 (N_(?’_a S+ 3 hiz'l“"*N‘(‘*—?a*))

=1

N
= Q| fllc2 (N—<3—“*> +> N‘lil_“*N_(4_20‘*)>

=1

< Qllflles (N7 + NEZONTE0) < QlflleaNTO7.

We combine (6.28), (6.32) and (6.35) to bound u — uy, for r > 2/(2 — a(0))

N
Ju =l < Qllfllca (N2 4+ N2 3 hs) < QllflleaN 2

=1

We thus finish the entire proof. O

6.3 NUMERICAL EXPERIMENTS

We follow [113] to numerically observe the impact of «(0) on the regularity of the
solutions and the convergence rates of the numerical approximations. We choose

k=1and f(x) =1 on z € [0,1] and a variable order of the form

o(x) = a(1) + (a(0) — a(1))((1 — 2) — sin(27(1 - x))/(27)). (6.36)
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Figure 6.1 Plots of Opup(z) on =z € [0,1] for cases (i)-(iii) [113, FIG. 1].

6.3.1 SINGULAR BEHAVIOR OF SOLUTIONS AT z = 071

We present the plots of 0,,up(z) for three scenarios: (i) a(0) = 1.0 and a(1) = 1.3;
(ii) @(0) = 1.3 and (1) = 1.6; and (iii) a(0) = 1.6 and a(1) = 1.9 with a uniform
mesh size h = 1/1000 in Figure 6.1. We observe that for «(0) # 1, the solutions
exhibit singular behavior near z = 0 that gets stronger as «(0) increases, which is

consistent with Theorems 6.2 and 6.3.

6.3.2 CONVERGENCE RATES OF v AND uy,

In Tables 6.1-6.3 we present the errors u — u, and v — v, and the convergence rates

for different «(0) and «(1) in (6.36)
lu = unl[pe < QN [lv—vallfe <Q@NTY

Since the true solution is not available, we compute the reference solutions using a
fine mesh size of N = 2880 on a uniform (denoted by ‘U’) or graded (denoted by ‘G’)
mesh.

We observe that for «(0) > 1, the numerical approximations u, and v, have
suboptimal order convergence rates of u = 3 — aj; and v = 4 — 2y, respectively,

nd optimal-order convergence rates on a graded mesh of r =
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2/(2 — a(0)). Moreover, u; and v, have optimal-order convergence rates as long as

a(0) = 1. These observations coincide with the conclusions of Theorems 6.6 and 6.7.

Table 6.1 Convergence rates for a(0) =

1.3 and (1) =

1.1 [113,

TABLE 1]

N

U

7

G

I

U

14

G

14

48
72
96
120
144

1.00E-05
5.29E-06
3.34E-06
2.34E-06
1.74E-06

1.57
1.59
1.61
1.62

2.75E-06
1.22E-06
6.87E-07
4.39E-07
3.05E-07

2.00
2.00
2.01
2.01

4.09E-04
2.31E-04
1.54E-04
1.12E-04
8.62E-05

1.41
1.41
1.42
1.43

3.43E-05
1.52E-05
8.57TE-06
5.47TE-06
3.79E-06

2.00
2.00
2.01
2.02

Table 6.2 Convergence rates for «a(0) =

1.6 and a(l) =

1.4 [113,

TABLE 2]

N

U

0

G

L

U

v

G

14

48
72
96
120
144

4.53E-05
2.65E-05
1.80E-05
1.32E-05
1.03E-05

1.33
1.35
1.36
1.38

3.5TE-06
1.57E-06
8.83E-07
5.65E-07
3.93E-07

2.02
2.01
2.00
1.99

5.99E-03
4.45E-03
3.59E-03
3.03E-03
2.63E-03

0.73
0.75
0.76
0.78

6.09E-05
2.75E-05
1.56E-05
1.01E-05
7.00E-06

1.96
1.97
1.98
1.98

Table 6.3

Convergence rates for a(0) = 1.0 and «(1) = 1.2 or 1.8 [113, TABLE 3]

a(l)

1.2

1.8

1.2

1.8

N

U

L

U

i

U

U

48
72
96
120
144

2.72E-06
1.21E-06
6.80E-07
4.35E-07
3.02E-07

2.00
2.00
2.00
2.00

5.94E-06
2.63E-06
1.48E-06
9.44E-07
6.54E-07

2.01
2.01
2.01
2.01

1.93E-05
8.57TE-06
4.81E-06
3.07E-06
2.13E-06

2.00
2.01
2.01
2.02

5.57E-05
2.50E-05
1.41E-05
9.07E-06
6.30E-06

1.98
1.98
1.99
1.99
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CHAPTER 7
INVERSE VARIABLE ORDER PROBLEMS OF TIME /SPACE

FRACTIONAL PDES

In real applications, the (variable) fractional orders in fractional PDEs are usually
unknown and need to be determined and inferred from the observations of, e.g.,
solutions. In particular, the uniqueness of the identification is the key to guaran-
tee the reliability of the experimentally inferred parameters. There are extensive
investigations on the inverse fractional order problems of fractional PDEs (see e.g.,
[33, 35, 51, 54, 59]), while the corresponding studies on variable-order fractional mod-
els are still not available in the literature to our best knowledge. In this chapter we
study the unique determination of the variable fractional orders in the variable-order
tFDE (3.1) and the variable-order sFDE (6.1), with the observations of the unknown
solutions on any arbitrarily small spatial domain (over a sufficiently small time in-
terval). The proved theorems provide guidance where the measurements should be
performed, and ensure that with these observations the uniqueness of the identifica-
tion is theoretically guaranteed.

We first study the unique determination of the variable fractional order in the

variable-order tFDE (3.1) following [123].

Lemma 7.1. Suppose that the initial data uo € H*'" and f € H*(H") for r >
d/2 in problem (3.1) satisfy Bug — f(x,0) £ 0. Then there exists an open spatial
domain A C Q and a positive constant o > 0 such that either Buy — f(x,0) > o or

Buy — f(x,0) < —0 for x € A.
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Proof. By the Sobolev embedding H?**4/2+¢(Q)) — C?(Q) for any ¢ > 0 and the fact
that H*(Q) is a subspace of H*(Q), ug € H*"" () implies ug € C*(Q) and f € H*(H")
implies f € C([0,7];C(£2)). Then the conclusion of this lemma is a straightforward
consequence of the assumption Bug — f(a,0) # 0. In practice, as the uy and f are

given data, such A can be identified by directly calculating Bug — f(z,0). n
Based on this lemma, we present the main theorem of this chapter [123].

Theorem 7.2. Suppose that k # 0, ug € H™2 and f € H’*(}VI”) forr > 24 d/2
and £ > 1/2. Let A C § be an open subset on which either Bug — f(x,0) > o or
Bug — f(x,0) < —0 holds for some constant o > 0. Then the variable order a(t) in

model (3.1) can be determined uniquely in the following admissible set
A= {a(t) s at) is analytic on [0,T] and satisfies the Assumption A},

given the observations of the solution u to (3.1) in A over a small time interval.

More precisely, let a(x,t) be the solution to the following equation

i+ ko + Bu=f, (x,t)€Qx(0,T);
(7.1)

w(x,0) =ug(x), e, u(x,t)=0, (x,t)€Ix][0,T]

with the variable order a(t) € A. If
u(zx,t) = a(x,t), (x,t) €A x|0,7]
for some sufficiently small T > 0, then we have
a(t) =alt), te]lo,T].

Proof. By Theorem 3.2, ug € H*>*"(Q) and f € H*(H") implies u € C*([0, T]; H"(R2)).
As r > 2+ d/2, we apply the Sobolev embedding theorem [3] to conclude that
u € CH[0,T];C%*(2)). By Lemma 7.1, there exists an open subset A C € such that
either Buy — f(x,0) > o or Bug — f(x,0) < —o for & € A. In the rest of the proof

we-assume Bug—f(&50).> o without loss of generality.
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By the continuities of Bu and f, there exists a time interval [0,¢y] C [0, 7] such
that Bu — f > 30/4 > 0 for (x,t) € A x [0,to]. We apply du € C([0,T];C(Q2)) to
conclude that lim,_ o+ k 0} (t)u(w t) = 0. Then there exists a positive time instant
7 with 0 < 7 < to such that ‘kaa(t (m,t)’ < /4 for (x,t) € A x[0,7]. We
incorporate the preceding estimates into the variable-order time-fractional partial

differential equation (3.1) to conclude that
Owu(x,t) < —0/2 <0, V (x,t) € Ax[0,7]. (7.2)

Since u(z,t) = a(x,t) on (x,t) € A x [0,7] and u, & € C'([0,T]; C*(Q)), we have
Bu = Ba for all (z,t) € A x [0,7]. We subtract equation (3.1) from equation (7.1)

for (z,t) € A x [0, 7] to get
(7 = o7 N u(@,t) =0, V(x,t) € Ax (0,7].
An application of the mean-value theorem yields
0— <8f‘(t) a(t) u(x, t) / /C;(: Z( Ti- z;(t — S)Z>dz Dsu(x, s)ds

—5)7%0 T(1 = a(s,1)) .
- / T(1—a(s <F(1 “als, ) In(t — 3))@“(% s)ds (o(t) — a(t)),

for (x,t) € A x (0, 7] where a(s,t) lies between «(t) and &(t) for any 0 < ¢ < 7 and
0 < s < t. By assumptions on «(t) (and &(t)), a(s,t) lies between a(t) and &(t) that
are bounded between 0 and a, < 1. Consequently, there exist positive constants Q)

and 7 < 7 such that

(1 — a(s,t))
————= —In(t — 0 0 t, te (0,7 .
We incorporate the estimates (7.2)-(7.3) to conclude that

a(s t)

UQO/ e ( pydslat) =A@l 0<s <t (@0) € Ax (Om],

which implies a(t) = &(t) on t € (0, 7. Then the proof is completed by the condition
U
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Based on the above ideas and techniques as well as the well-posedness theorem
of the variable-order sFDE (6.1) in Chapter 6, the variable fractional order in this

sFDE can be unique identified in the following admissible set
F = {a(x) : a(x) is analytic on [0, 1] and satisfies the Assumption C}.

Theorem 7.3. [122] Suppose f € C[0,1] with f(0) # 0, k # 0 and the Assumption
C holds. Then the variable order o € F in model (6.1) can be uniquely determined
from the observations of the solution u(x) on an arbitrarily small interval near the
left end point of the interval. More precisely, let & € F and G(x) be the solution to

the problem
—Oppti(z) — k0X@q(x) = f(x), =€ (0,1); a(0)=a(l)=0.
If there exists an g with 0 < g9 < 1 such that
u(z) = a(z), Ve |0,e,
then the following equation holds

a(r) = a(z), Vzel0,1].
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